
System Architecture of a Distributed ExpertSystem for the Management of a National DataNetwork??? Ioannis Vlahavas1, Nick Bassiliades1, Ilias Sakellariou1, Martin Molina2,Sascha Ossowski2, Ivan Futo3, Zoltan Pasztor3, Janos Szeredi3, IgorVelbitskiy4, Sergey Yershov4, Sergey Golub4, and Igor Netesin41 Department of Informatics, Aristotle University of Thessaloniki, 54006 ThessalonikiGreecefvlahavas, nbassili, iliassg@csd.auth.gr2 Department of Arti�cial Intelligence, Technical University of Madrid, 28660Boadilla del Monte, Madrid, Spain.fmmolina, ossowskig@isys.dia.fi.upm.es3 ML Consulting and Computing Ltd, ML Kft, H-1011 Budapest, Gyorskocsi u. 5-7.,Hungary.ffuto, szeredig@ml-cons.hu4 International Software Technology Research Center Technosoft, 44 Glushkovavenue, Kiev, 252187, Ukraine.fvel, yershov, golub, netesing@netman.ts.kiev.uaAbstract. The management of large data networks, like a nationalWAN, is without any doubt a complex task. Taking into account theconstantly increasing size and complexity of today's TCP/IP based net-works, it becomes obvious that there is a demanding need for better thansimple monitoring management tools. Expert system technology seemsto be a very promising approach for the development of such tools. Thispaper describes the system architecture of ExperNet, a distributed ex-pert system for the management of the National Computer Network ofUkraine, and the implementation of the tools used for its development.ExperNet is a multiagent system built in DEVICE, an active OODBenhanced with high level rules, that uses CS-Prolog II to implement thecommunication facilities required. The system employs HNMS+ and Big-Brother, two modi�ed versions of existing network management tools, inorder to obtain a complete view of the monitored network.keywords: Distributed expert systems, agents, network management, dis-tributed prolog.? The work described in this paper is funded by the EU INCO-Copernicus projectExperNet: A Distributed Expert System for the Management of a National Network,No 960114?? The order in which the authors appear does not reect their contribution to the workdescribed in this paper.

1 IntroductionThe exploitation of a large WAN cannot be e�ectively achieved without a user-friendly and intelligent network management software. Existing network manage-ment software cannot meet the requirements of such large-scale networks, mainlybecause it o�ers, in most cases, only monitoring tools. One of the most impor-tant directions for the practical application of network management software, isits enhancement with higher level decision support and diagnostic services.ExperNet is a distributed expert system for the management of the NationalNetwork of Ukraine, developed in the framework of a joint EU funded researchproject. The development of expert systems for WAN management is only atresearch and experimental stage. There are di�culties in the formalization ofsuch a task because of the incompleteness and lack of adequate information aboutnetwork state, the large scale of behaviour characteristics, and the continuousevolution of the network environment. The absence of practical and veri�edexpert systems for large, complex modern technological systems like WANs,demonstrates the complexity of the task and pose a great challenge ahead.Distributed expert systems using co-operative problem solving strategies withnew general conict detection and conict resolution mechanisms, seem to pro-vide a feasible but also an elegant solution to the WAN network managementproblem. Such a distributed expert system, requires an su�cient communica-tion facilities and an e�cient expert system shell that is able to cope with largeamounts of data and o�er multiple knowledge representations. Another impor-tant point in the design of the system is that there must be an e�cient wayof determining the network state and capturing important network events, inother words an e�cient monitoring schema. The implementation of such a func-tionality has to be in accordance with the existing network monitoring facilities,namely it has to adopt to the Simple Network Management Protocol (SNMP)in order to have control over the existing network devices.This paper describes the ExperNet system architecture, that ful�ls the aboverequirements, and presents the system components.2 The ExperNet System ArchitectureAs the network management problem of the ExperNet project has turned out tobe inherently distributed, we conceive the ExperNet architecture as multiagentsystem. At each management node there is one agent, specialised in managingthe network area that the node is responsible for. In consequence, the structureof the system architecture goes in line with the structure of the pre-existingorganisation of the experimental zone of the network. The overall architecture ofthe system is shown at �gure 1. Each ExperNet agent is attached to an HNMS+server; the latter provides necessary information about the state of the networkto the former. Additional information is provided by Big Brother, a tool formonitoring local computer resources. The agents are developed in DEVICE, andcommunication facilities are provided by CS-Prolog II. All system components,shown in the �gure, are described in the rest of the paper.

0DQDJHPHQW�1RGH

+106�
6HUYHU

([SHU1HW�$JHQW

'HYLFH
&63�,,

.QRZOHGJH
%DVH

,�2
0RGXOH

,�2
0RGXOH

'%
PRGXOH

+106�
6HUYHU

'%
PRGXOH

6103
GHYLFH

6103
GHYLFH

6103
GHYLFH

����

����

,�2
0RGXOH

6103
GHYLFH

([SHU1HW�$JHQW

([SHU1HW�$JHQW

���� ����

%LJ%URWKHU

6103�&RQQHFWLRQ
+103�&RQQHFWLRQ

Fig. 1. ExperNet System ArchitectureEach agent comprises two types of knowledge: local knowledge for individualproblem-solving (i.e. for local network management) and social knowledge for co-ordination (i.e. for harmonising local network management with the activities ofacquaintance nodes).2.1 Local Problem-solvingIn order to characterise the knowledge model of each agent we have applied ad-vanced knowledge engineering techniques. The particular characteristics of thedomain of network management include complex problem-solving tasks (classi-�cation, diagnosis, planning, etc.) which suggests to use the concept of model-based system development, that has recently become popular among researchersand knowledge engineers, for the development of large and complex knowledge-based systems. For instance, some recent methodologies and tools such as Kads[17], KSM [10], Prot�eg�e-II [15], follow this model-based approach. According tothis, we have modelled the agents' problem-solving competence as a three stepprocess: (1) symptom detection, where administrators watch out for symptoms ofundesired network states and behaviours (e.g. a certain service -ftp, www, etc.-does not respond, a host is unreachable, over/under-utilisation of links or equip-ment, etc.); (2) diagnosis, which is done by discriminating hypothesis of di�erentdegrees of precision on the basis of network data and the result of exploratory

actions to �nd the causes of symptoms (e.g. inadequate capacity for some re-source, unbalance of workload and resources, resource malfunctions, etc.) and(3) repair, where a sequence of repair actions is proposed to solve the problem.
0DQDJH�1HWZRUN

'LDJQRVH�DQG�
5HSDLU

$EVWUDFW 0DWFK 5HILQH�
+LSRWKHVLV5HILQH 6HOHFW�

%HVW
$FTXLUH�
2EVHUY�

6HOHFW�
6SHFLDOLVW

'HWHUPLQH�
$SSOLFDE�

3URSRVH�
3ODQ

'HFRPSRVH�
3ODQ

&RPSRVH�
3ODQ

'HWHFW 'LDJQRVH 5HSDLU

+HXULVWLF�&ODVVLILFDWLRQ (VWDEOLVK�	�5HILQH +LHUDUFKLFDO�3ODQQLQJ

3URSRVH�
3DUWLDO�3ODQ

+LHUDUFKLFDO�3ODQQLQJ

3ODQ�
6WUXFWXUH

5HILQHPHQW+HXULVWLF�
3ODQV

$SSOLFDE��
&RQGLWLRQV

3ODQ�
6WUXFWXUH

$FTXLVLWLRQ�
0HWKRGV

+\SRWKHVLV�
9DOLGLW\

+\SRWKHVLV�
7D[RQRP\

1HWZRUN�
0RGHO

3UREOHP�
6FHQDU�

1HWZRUN�
0RGHO Fig. 2. Local Problem SolvingEach step is realised by customising generic knowledge modelling methods[17]. The heuristic classi�cation problem-solving method [8] constitutes a typicalreasoning structure for classi�cation problems and is used for symptom detec-tion. It follows three steps (abstraction, matching and re�nement) which, in ourmodel, are supported by two types of knowledge bases: one about the networkmodel for abstraction and re�nement, that includes a declarative representationof the network structure, and another that uses a set of problem scenarios relat-ing symptoms and observables. For diagnosis, the establish and re�ne method isused [7]. This method can be conceived as an abstract reasoning pattern basedon a heuristic search in a taxonomy of hypotheses of problems. Our particularadaptation of the establish and re�ne method makes use of three primitive in-ferences: (1) re�ne problem hypotheses uses a knowledge base represented by ataxonomy of hypothesis classes using the is-a relation; (2) select best hypothe-sis makes use of knowledge about the validity of hypotheses (represented using

frames) to establish whether any of the input hypothesis can be proved, and (3)acquire additional observables determines the sequence of exploratory actions toget additional observables by using a knowledge base about acquisition meth-ods (represented by rules). Finally, the hierarchical planning method is used forthe repair task. This method is based on a search in a hierarchy of special-ists that are knowledgeable about partial abstract plans, which are dynamicallycomposed during the reasoning [5]. The particular instance of the hierarchicalplanning method that we use in the network management domain, makes use offour specialists (top level, fault detection, performance management and con�g-uration) and uses �ve primitive inferences supported by four types of knowledgebases.2.2 Social Co-ordinationAn important part of a node administrator's time is not spent in local problem-solving, but in co-ordinating its work with other administrators. In the particularcase of ExperNet, three types of situations require co-ordination: (1) Informationacquisition, when additional observations are needed, which are available (orcan be acquired) within the agent society, but are not accessible (or cannot beacquired) by the node itself. (2) Responsibility conicts, when di�erent agentsintend to perform similar tasks. (3) Interest conicts, when one agent does notagree with its role in a certain repair plan or with the e�ects that some plan willhave on its local situation.We model the process of co-ordination in the above situations as conversa-tions [1], i.e. logically coherent sequences of agent interactions. Conversationsthat cope with responsibility conicts are very simple, as they just involve oneinteraction, transferring the responsibility for some task from the sender to thereceiver. We propose three kinds of conversations of this type: diagnosis andrepair delegation, repair delegation and isolation delegation. Information acqui-sition problems are managed by means of the observable acquisition and the planre�nement conversations, in the course of which a needy agent asks some tar-get agent for a certain observable or plan; the latter may either reply with thisinformation or by notifying its inability (or unwillingness) to facilitate it. Planacceptance conversations manage interest conicts, where all a�ected agents needto agree in order that a proposed plan be accepted.Interactions within a conversation are based on a message-passing model.Every message that is exchanged during such interactions can be considered asSpeech Acts, as by emitting it the sender wants to inuence the behaviour ofthe receiver [14]. The table 1 resumes the di�erent messages that are used in thenetwork management model as well as their intended e�ect on the receiver.Within conversations there are various degrees of freedom for the involvedagents, as they usually may choose from several behaviour options (in the sim-plest case to accept or to reject a request). An agent's choice is not just deter-mined by information respecting its local situation, but also by its knowledgeand experience with other nodes in the network. It thus maintains agent models

Table 1. Types of Messages and InteractionsMessage types Receiver's intended reactionASK FOR observable acquires observable & informs senderASK FOR plan acceptance decides about acceptance & informs senderASK FOR plan re�nements re�nes plan & informs senderDO diagnosis and repair performs diagnosis and repair tasksDO isolation performs problem isolationDO repair performs repair taskANSWER WITH observable informs about observableANSWER WITH plan acceptance informs about plan acceptanceANSWER WITH plan re�nements informs about plan re�nements(this type of knowledge is also refered to as "acquaintance model" [9]) of all ac-quaintances that it interacts with including itself [11]. These models endow theagent acquires with additional capabilities: (1) problem interest: checks whetherthe modelled agent is believed to interested in being noti�ed about a problem(e.g. because it is indirectly a�ected by that problem and wants to isolate it inorder to keep its e�ects as local as possible); (2) plan interest: checks whetherthe modelled agent needs to be noti�ed about a given plan (either because it isinvolved in it or because its side-e�ects concern the modelled agent); (3) planrights: checks whether there is a need to obtain the agreement of the modelledagent for enacting a given plan; (4) observation capability, checks whether themodelled agent is believed to by capable of acquiring the value of a given ob-servable; (5) diagnosis capability, determines if the modelled agent is capableof performing diagnosis for a given symptom; (6) plan repair capability, checkswhether it can elaborate a plan for a given problem; (7) plan re�nement capa-bility, analyses whether the agent may re�ne a given abstract plan for a givenproblem.On this basis, the three step local problem-solving cycle of an agent can beextended, leading to the control loop shown in �gure 3, followed by ExperNetagents.1. Detect symptoms.2. Inform agents interested in the symptoms, in order to diagnose them.3. Diagnose problem (if the agent is responsible). If there are missing observables,ask agents for acquiring the corresponding value.4. Inform agents interested in problems, in order to isolate them.5. Inform agents interested in problems, in order to repair them.6. Generate a repair plan (if the agent is responsible). If necessary, asks agents forplan acceptanceFig. 3. Structure of the method followed by an agent to manage the network.

3 The Device Expert System ShellFor the implementation of the knowledge model, the DEVICE [2, 3] expert sys-tem shell is selected, since it presents a number of interesting features, like multi-ple rule type support and Object Orientation. DEVICE (Data-driven & EVent-driven rule Integration using Complex Events) is a sequential Knowledge BasedSystem that runs on top of ADAM and EXACT. The former is an OODB builtin Prolog, while the latter is an extension of ADAM with events and ECA rules(Figure 4). DEVICE is in fact, an active OODB enhanced with high-level rulefacilities. It provides the infrastructure for the smooth integration of productionand deductive rules into an active OODB that generically supports event-drivenrules only. The integration is based on the compilation of the condition of bothhigh-level rule types into a discrimination network that consists of simple andcomplex events which record and combine database modi�cations that couldpossibly make a rule �re.
HYHQW�PDQDJHU

UXOH
VFKHGXOLQJ

UXOH�PDQDJHU

SDUVHU�
SUH�FRPSLOHU�
RSWLPL]HU

FRPSLOHU

QRQ�PDWHULDOLVHG
GHGXFWLYH�UXOH
PDQDJHU

GHGXFWLYH�UXOH
PDQDJHU

SURGXFWLRQ
UXOH�PDQDJHU

FRPSOH[�HYHQW
QHWZRUN

HYHQW�REMHFW
FUHDWLRQ

FKHFNLQJ
RFFXUUHQFH

UXOH�WUHH

UXOH�FUHDWLRQ XSGDWHV
XSGDWHV

ILULQJ�UXOH
DFWLRQ

LQKHULWV

LQKHULWVLQKHULWV

$'$0
FRPPDQGV

3URORJ

$'$0
(;$&
7
'(9,&(

8VHU

UXOH�REMHFW
FUHDWLRQ

22'%
FODVVHV
3URORJ
PRGXOHVFig. 4. The architecture of the DEVICE system.A rule base in DEVICE, can be a mixture of ECA, production and deductiverules. The two latter are high-level rules, whose integration into the active OODBhas been smoothly achieved in DEVICE. Backward chaining or goal-driven rulesare also supported in DEVICE in the form of methods. Methods are pieces ofProlog code, therefore a backward chaining declarative language is provided. Forthe e�cient matching of the production rules, DEVICE smoothly integrates aRETE-like discrimination network into an active OODB system as a set of �rstclass objects by mapping each node of the network onto a complex event object ofthe active database system. In order to bring the full functionality of productionsystems into an active database system, heuristic conict resolution strategies

(OPS5 approach), namely refractoriness, recency and speci�city, have been in-corporated into the rule selection mechanisms of the integrated environment.The production cycle of DEVICE is presented in �gure 5.

Discrimination
Network

Active OODB

Rule matching

Action execution

Event signalling

Data modifications

DEVICE

USER

meta-classes
objects

classes

Event Manager
complex events

Rule Selection
Rule Manager

Conflict set

Fig. 5. The production cycle of DEVICE.The resulting system is a exible, yet e�cient, KBS that gives the user theability to express knowledge in a variety of high-level forms for advanced problemsolving in data intensive applications.The ability of DEVICE to handle large collections of data is important forthe development of the ExperNet system, since the information in any WANconcerning the status of the various network devices is large. It has to be notedhere, that the OO architecture and data types supported by DEVICE naturallyadopt to existing representations of network management information, such asMIB and HNMS+ MIB, providing an easy mapping of network variables toDEVICE objects. For the needs of ExperNet, DEVICE has been implementedin CS-Prolog-II, a language which, among others, o�ers extended communicationfacilities. The latter, in conjunction with the ability of integrating Prolog codewith production rules in a simple, clear and robust manner, o�ers an expert

system shell in which communication can be easily implemented, thus o�ering apowerful platform for the development of any agent based system.4 The CS-Prolog II SystemIn the development of any multiagent system, a crucial issue is the implementa-tion of the communication facilities that are required for the co-operation andco-ordination of the involved agents. In ExperNet these facilities are developedusing CS-Prolog II a distributed Prolog enhanced with networking facilities.4.1 General overviewCS-Prolog II distributed Prolog system is being developed from 1995. The syntaxand the built-in procedures of the language are based on the standard ISO/IEC13211-1. It is extended with features that were not included in the standard, likemodularity, multitasking, real-time programming and network communication.CS-Prolog II, supports the communicating sequential process programmingmethodology in a Prolog environment. On a single processor machine the concur-rent processes are controlled by a time-sharing scheduler. The inter-process com-munication is ensured by a rendezvous mechanism (synchronous message passingthrough communication channels). Processes can backtrack, however communi-cation is not backtrackable. The channel based communication had recently beenextended with networking capabilities. This makes possible message passing be-tween di�erent CS-Prolog II applications across the Internet. CS-Prolog II alsoprovides communication with foreign (non CS-Prolog) applications, an inter-face to relational data base systems, real time programming methods like cyclicbehaviour, reaction to prede�ned events, timed interrupts, etc.The system consists of three main components: a compiler, a linker and aruntime system. The compiler contains a pre-processor similar to what is foundin C compilers. The integrated development environment is based on OSF/Motifand runs on UNIX platforms. The main advantage of this environment is themulti-window trace utility in which the debugging messages of separate processesappear in separate windows.4.2 Networking facilitiesAs a natural extension of CS-Prolog II channel concept, the external commu-nication conceptually consists of unidirectional message streams. In order tofacilitate speed-up of external communication, asynchronous message passing isintroduced as an option. Send operation in this case still remains blocking butthe condition for continuing execution is the availability of su�cient bu�er spaceinstead of the commencement of the matching receive operation.For the Prolog programmer the communication environment appears as ahomogenous address space (community). All partners will be accessed via chan-nel messages. A separate mechanism is introduced for connecting channels to

external partners. The most important entity for this task is the so-called port.Ports represent incoming message substreams. They are explicitly created andplay the role of a sender for a CS-Prolog II channel speci�ed at the time of portcreation. The other end of the channel can be used in the same way as the re-ceiving end of any internal channel. At port creation, a bu�ering parameter canbe speci�ed indicating the size of message bu�er.Another important notion in CS-Prolog II is the connection. A connection isthe representation of an outgoing message stream. Its attributes include the localchannel, the partner's name and the partner's port (if partner is not foreign) towhere the stream is directed. Its size of the connection's message bu�er can beset at creation. If the value of the bu�ering attribute is greater than zero thenmore than one message can be stored in the connection bu�er, allowing severalsend operations to complete without blocking.In a centralised subnetwork of CS-Prolog II applications managed by a (pos-sibly foreign) manager program, the following types of partners can appear fora speci�c CS-Prolog II program:{ Private partners; their addresses have to be available in advance for theprogram (hardwired in the program, obtained from a �le, e.t.c.).{ Net partners, which have signed up at the manager, and our program in-cluded them in its local picture of the network. The address of a net partneris obtained from the manager.{ Latent partners, who are known by manager, but our program didn't includethem in its local network picture. The address of a latent partner (and someother attributes too) can be asked from the manager.In the current TCP/IP implementation of the CS-Prolog II low-level com-munication protocol, in order to be able to communicate with a net partner, acon�guration process has to be performed as for private partners. In other wordsthe program has to add explicitly this partner using special built-in predicate.In future CS-Prolog II versions, if the underlying network layer providesthe possibility of communicating with partners with known addresses withoutbuilding a speci�c transmission path to them, the explicit con�guration of netpartners can be omitted.5 Capturing the Network StateThe size and complexity of National Computer Network of Ukraine are of themost important issues in its management [13], creating problems in the area offull-edged data collection for ExperNet intelligent agents. We have approachedthis problem by modifying the Hierarchical Network Management System (HN-MS) and BigBrother network monitoring tool, in the way presented in the fol-lowing.5.1 The HNMS+ SystemThe HNMS system prototype version was developed to cover the network man-agement needs that arose because of the continuing installation of large, high

speed local and wide-area networks for the Numerical Aerodynamic Simulation(NAS) Faculty at the NASA Ames Research Center [12]. This prototype versionof HNMS is available on the Internet.The prototype version of the available HNMS consists of two types of mod-ules, which typically reside on separate hosts throughout the network. The Servermodule is the hub for the network data; it provides a center for disseminationof global topology and status information. The User Interface (UI) module re-sides on workstations with graphics capabilities and provides access to real-timeor logged data. All inter-module communication is done using the HierarchicalNetwork Management Protocol (HNMP) described in [12]. The protocol requiresthe use of new HNMS MIB, which de�nes a set of variables in addition to stan-dard SNMP variables [6, 16]. HNMS MIB objects represent IP network elementswithin HNMS system. Each object is identi�ed by a unique number, its HNMSid, which is assigned by the server. Objects belong to one of the following classeswhich represent network entities or other useful information about network man-agement: Internet, Network, Subnet, Interface, Processor, Site, Equipment, Ad-ministrator, or Address.HNMS provides four types of status diagrams, each representing the view ofstate of a network element using a colour code. These diagrams are updated bythe server, reecting changes of the element's status. The WAN diagram depictsthe state of the IP network and the routers over a geographical reference (e.g.a map of Ukraine). The Site diagram represents all LANs that are connectedto the routers at a given site. The Custom diagram allows the user to constructa diagram with any set of network elements he wishes to observe. Finally, theObject diagram is a textual display of the HNMS variables.Although Input/Output (IO) modules were mentioned in the general archi-tecture of HNMS, the prototype version did not support multiple IO modules,and as a consequence, there was no true hierarchy in its structure. Therefore,the implementation of IO module functionality was necessary to collect localinformation about the behaviour of particular subnetworks that are compoundparts of National Network of Ukraine. The IO modules reside on hosts located atstrategic points within WAN (regional, district, metropolitan-area subnetwork)and handle actual data collection. Our IO modules use SNMP [6, 16] protocolfor local data collection from the SNMP agents attached on the actual networkdevices. These modules pass �ltered management data, up to the server module.In accordance with the overall architecture of HNMS, data are sent from IO toservers only when their values change. Thus the hierarchical installation of IOmodules allows to avoid ooding the network with management tra�c and cre-ating bottlenecks when management information is directed to ExperNet agents.The new HNMS is named HNMS+ and it is a true hierarchical distributed sys-tem which fully supports HNMS functionality and extends it with new features.Additionally, the fourth type of module mentioned in the HNMS externalspeci�cation, the database module, was developed. The database module is anSQL front-end process that stores HNMS+ MIB variable values in a PostgreSQLdatabase with a frequency given by the user (usually approx. 1 minute). The

database module interacts with the HNMS+ server/IO module store only whenvariables of local server/IOmodules change in order to avoid network overloadingby SQL requests.Finally, an interface of the ExperNet agents with HNMS+ was implementedin CS-Prolog II as a special Knowledge-based intelligent processing (KBIP). TheKBIP module is an application that obtains, through HNMP protocol, informa-tion about network tra�c and utilisation of the network elements.On each node HNMS+ provides to the ExperNet agents an immediate per-ception of the state of network. Using KBIP modules, ExperNet agents not onlyare able to immediately determine the general state of the network but also benoti�ed by HNMS+ about important network events.5.2 The BigBrother Monitoring SystemIn order to su�ciently monitor the network state and services availability, theinformation obtained by standard SNMP agents is not enough. An importantissue is the evaluation of particular TCP/IP network services quality (like ftp,http, smtp and nntp), services reliability and local host resources like CPU, diskand so on.Big Brother is a free Web-based UNIX Systems monitor, developed by SeanMacGuire [4]. Big Brother consists of simple shell scripts which periodically mon-itor local system conditions (Local System Monitor or bb-local.sh) and networkconnectivity (Network monitor or bb-network.sh) as well as Intra-machine com-munications programs (bb, bbd, nettest). Disk usage, CPU loading, ftp, smtp andhttp servers, and important processes can be kept track of. The results of moni-toring are reported in a status matrix (using a colour code) for each system/areacombination, which is displayed on a central monitoring station (Display Server)and presented through a Web based user interface.For the needs of ExperNet, we have integrated HNMS+ and BigBrother inorder to achieve monitoring of TCP/IP services and remote computer resourcesby the ExperNet intelligent agents. HNMS+ MIB was extended to incorporatethe additional monitoring values of the status matrix of BigBrother that cor-respond to all services/resource types included in the latter. HNMS+ server(or IO module) analyses a local log �le created by BigBrother and �lls out thepreviously mentioned MIB variables.Additionally to existing BigBrother processes, a UNIX daemon (module) wasdeveloped that o�ers the possibility of remote UNIX command invocation. Thiswas necessary since, ExperNet intelligent agents, in some cases, require informa-tion that cannot be obtained directly from HNMS+, but only through commandexecution on the monitored remote hosts, as for example information obtainedby the "traceroute" and "tcpdump" packet monitoring utilities. Although insuch cases the usual "rsh" UNIX command could be used, the above solutionwas preferred since it o�ers the possibility to restrict the set of commands thatare allowed, through appropriate con�guration of the module, thus leading to amore exible and secure system.

To conclude, the modi�ed BigBrother provides information to ExperNet in-telligent agents through HNMS+, not only about the status of the most impor-tant TCP/IP network services, but also about the operational parameters of theindividual monitored hosts. It also o�ers a relatively secure remote commandinvocation that allows the system to better monitor or even control the network.6 Current Status and Future WorkCurrently the major part of the project has been successfully completed. Thispart comprises the design of the overall system, as well as the implementation ofthe various components that have been described in the present paper. A largepart of the knowledge base has been encoded in the language of DEVICE. Weare now approaching the �nal phase of the implementation which consists of thedevelopment of a graphical user interface, the installation of the �nal system inUkraine and the veri�cation phase.One simple but yet very important way in which ExperNet can be extendedis the enrichment of the knowledge base so that it will be able to handle a largerset of network failures. Currently the system covers a rather limited number ofsuch cases, since our main goal was to have a pilot system that will successfullydemonstrate the applicability of expert system technology to the managementof large networks.Depending on the results of the application of ExperNet in the managementof the National Network of Ukraine, the system could be adopted to provideservices in larger data networks in Europe as well as other countries, and leadto an improvement of the end-user services, as well as relieve the administratorsof much of the burden they have to face in their everyday practice. Taking intoaccount the growth rates of the TCP/IP based networks world-wide and theirconstantly increased complexity, such functionality might not only be desirablebut also essential in the near future.References1. Barbuceanu M., Fox S.: COOL: A Language for Describing Coordination in MultiAgent Systems. Proc. ICMAS, 19952. Bassiliades N. and Vlahavas I.: "DEVICE: Compiling Production Rules intoEvent-Driven Rules Using Complex Events", Information and Software Technol-ogy, Vol. 39(5), pp. 331-342, Elsevier Science, 1997.3. Bassiliades N. and Vlahavas I: "Processing Production Rules in DEVICE, anActive Knowledge Base System". Data & Knowledge Engineering, Vol. 24(2), pp.117-155, Elsevier Science, 1997.4. BigBrother. A Web-based Unix Network Monitoring and Noti�cation System.Available at URL: http://www.iti.qc.ca/users/sean/bb/bb.html5. Brown, D. and Chandrasekaran, B.: Design Problem-solving: Knowledge Struc-tures and Control Strategies. Morgan Kaufman, 19896. Case J., Fedor M., Scho�stall M., Davin J. Simple Network Management Protocol,RFC 1157, SNMP Research, Performance Systems International, MIT Laboratoryfor Computer Science, 1990.

7. Chandrasekaran, B., Johnson, T., and Smith, J.: Task-Structure Analysis forKnowledge Modelling. Communications of the ACM 35 (9), 19928. Clancey W.: Heuristic Classi�cation. Arti�cial Intelligence 27, 19859. Cockburn, D. and Jennings, N.: ARCHON: A Distributed Arti�cial IntelligenceSystem for Industrial Applications, Foundations of DAI. O'Hare and Jennings(eds.), Wiley, 199610. Cuena J., Molina M.: KSM: An Environment for Knowledge Oriented Design ofApplications Using Structured Knowledge Architectures. Applications and Im-pacts. Information Processing 94. Vol 2 K. Brunnstein and E. Raubold (eds.).Elsevier, 1994. (see also: http://www.isys.dia.�.upm.es/ksm).11. Cuena J., Ossowski S.: Distributed Models for Decision Support. To appear in In-troduction to Distributed Arti�cial Intelligence. Weiss and Sen (eds.) AAAI/MITPress, 199812. George Jude A., Schecht Leslie E. The NAS Hierarhical Network ManagementSystem In "Integrated Network management III", H.-G. Hegering and Y. Yemini(Editors), Elsevier Science Publishers, Amsterdam, 1993.13. Matov Alexander. The development of Internet-like networks in Ukraine Networksand Telecommunications, Kiev, no.2, 1997. - pp.4-11.14. Muller, H.-J.: Negotiation Principles in Foundations of DAI. O'Hare and Jennings(eds.), Wiley, 199615. Puerta A.R., Tu S.W. and Musen M.A.: Modelling Task with Mechanisms. Inter-national Journal on Intelligent Systems. Vol 8, 1993.16. Rose M. The Simple Book: An Introduction to Management of TCP/IP-basedInternets. Prentice-Hall, Inc., New Jersey, 1991.17. Wielinga B.J., Schreiber A.T., Breuker J.A.: "KADS: A Modelling Approach toKnowledge Engineering". Knowledge Acquisition, 1992.

