
Cspcons: A Communicating Sequential Prolog
with Constraints

? Ioannis Vlahavas1, Ilias Sakellariou1, Ivan Futo2, Zoltan Pasztor2, and Janos
Szeredi2

1 Department of Informatics, Aristotle University of Thessaloniki, 54006 Thessaloniki
Greece

{vlahavas, iliass}@csd.auth.gr
2 ML Consulting and Computing Ltd, ML Kft, H-1011 Budapest, Gyorskocsi u. 5-7.,

Hungary.
{futo, pasztor, szeredi}@ml-cons.hu

Abstract. Cspcons is a programming language that supports program
execution over multiple Prolog processes with constraints. The language
is an extended version of Csp-ii, a version of Prolog that supports, among
other features, channel-based communicating processes and TCP/IP com-
munication and is based on the CSP model introduced by Hoare. Csp-
cons inherits all the advanced features of Csp-ii and extends it by in-
troducing constraint solving capabilities to the processes. In Cspcons
each Prolog process has one or more solvers attached and each solver is
independent from the others, following the original Csp-ii model, thus
resulting to a communicating sequential constraint logic programming
system. Such a model can facilitate greatly the implementation of dis-
tributed CLP applications. Currently Cspcons offers a finite domain
constraint solver, but the addition of new solvers is supported as they
can be integrated in the system in the form of linkable C libraries. This
paper briefly describes the original Csp-ii system along with the exten-
sions that resulted to the Cspcons system.

1 Introduction

In the past decade, constraint programming has proven to be a suitable plat-
form for tackling large combinatorial problems with significant applications in
industry, like scheduling, resource allocation, etc. However even with the most
advanced techniques, solving such problems is both space and time costly.

The introduction of new sophisticated sequential algorithms for constraint
satisfaction is one way to overcome the problem. However the availability of a
large number of machines connected by some local network, naturally led to the
approach of distributing the problem to multiple processing units, often called
agents or workers, that cooperate to solve the problem more efficiently.

? This work was supported by the Bilateral Cooperation Program Greece-Hungary
2000-2002

Cspcons is a logic programming language for building such systems. The
language is an extension of the Communicating Sequential Prolog II (Csp-ii) a
version of Prolog that is based on the notion of communicating sequential pro-
cesses. Cspcons supports independent CLP processes each having its own con-
straint store that communicate through message exchange over channels. Com-
munication is possible both between processes that reside in the same host and
on different hosts over TCP/IP networks. Constraint facilities in Cspcons are
implemented as C libraries, thus permitting the incorporation of new constraint
just by the addition of the appropriate library. The current version includes a
library for constraint satisfaction over finite domains (FD).

The combination of the channel based communication and constraint satis-
faction, all under the logic programming framework, offers a powerful platform
for the rapid implementation of any distributed CSP application.

This paper is organized as follows. Section 2 briefly presents related work
in the field of distributed constraint satisfaction. An overview of the features of
the Csp-ii language is presented in Section 3, considered necessary since all its
features are inherited to the Cspcons language. The necessary extensions for
the support of constraints together with the description of the implementation
of the FD solver that form the Cspcons language is given in Section 4. Section
5 shows an example of a distributed implementation of the N-queens problem
along with some experimental results. Finally conclusions and future work are
stated in section 6.

2 Distributed Constraint Satisfaction Problems

Informally, a constraint satisfaction problem (CSP) consists of finding an as-
signment of values from a given domain to a set of variables, such that a set
of constraints on the variables is satisfied. Constraints are imposed on a sub-
set of the domain variables and restrict the values which can be simultaneously
assigned to them.

A distributed constraint satisfaction problem is a CSP in which the vari-
ables/constraints are distributed over some network of agents. Agents are con-
straint solvers which co-operate to solve the original problem. The need for
distributed constraint programming applications derives mainly from two facts:
a) more efficient implementations, in terms of execution time, can be achieved by
decomposing the original problem into subproblems and b) representing prob-
lems that are naturally distributed is significantly facilitated, as for example
production planning in a factory in which independent departments must meet
their local constraints and at the same time co-operate to achieve global con-
straints.

A number of approaches have been reported to the literature that address the
issue of building distributed constraint programming applications. In the sequel
we will restrict our presentation to systems that belong to the logic programming
framework and also present some algorithms proposed.

The approach followed for the implementation of the distributed capabilities
of the CIAO language[5] is described in [1]. CIAO is a system based in Prolog
extended with constraints, parallelism and concurrency. The distributed execu-
tion capabilities are based on the Linda library for implementing communication
between processing units (referred to as workers), i.e. it adopts a blackboard ar-
chitecture and the use of attributed variables[6].

A different approach to solving CSP problems in parallel has been proposed
by Tong and Leung in [12]. Their model, called Firebird, is based on an exten-
sion of the Andorra principle and is an attempt to build a concurrent constraint
logic programming system on a massively parallel SIMD computer, that will
exploit OR-Parallelism. In Firebird execution interleaves between indetermin-
istic derivation steps that consist of guard tests, commitment and spawning in
the same manner as committed-choice languages and non-deterministic deriva-
tion steps which consist of setting up a choice point on a domain variable and
attempting all the alternative values in its domain in an OR-parallel manner.

Apart from the above systems a number of algorithms have been proposed
that address the issue of distributed constraint satisfaction. A class of such algo-
rithms performs distributed arc consistency, as for example a distributed version
of the AC4 algorithm, based on an message passing communication model [9]. In
[16] Zhang and Mackworth present parallel and distributed algorithms for com-
puting consistency by formulating a CSP as a dual network, in which constraints
correspond to nodes and variables to arcs. These algorithms were tested on a
transputer based machine.

In [14, 15] authors propose an asynchronous backtracking algorithm and its
modification, the asynchronous weak-commitment search, that efficiently solves
distributed constraint satisfaction problems. In the proposed algorithm a prob-
lem variable is assigned to each agent who instantiates it and communicates
its value through messages to other agents. Upon the detection of an inconsis-
tency, agents exchange appropriate messages in order to backtrack and achieve
a consistent assignment of values.

In the distributed backtracking algorithm (DIBT) introduced in [4], a dif-
ferent approach is followed. Agents compute their position in a total ordering
of the network, each having a set of parent and child agents. Upon variable
instantiation the agent’s children are informed of the chosen value and failure
to determine a consistent value in this set initiates backtracking to the parent
agents. The algorithm employs message passing communication.

Finally, an algorithm that integrates distributed consistency techniques into
asynchronous backtracking is presented in [11]. The proposed algorithm com-
bines a distributed bounds consistency algorithm, called DHC, with a distributed
search technique called Asynchronous Aggregation Search [10]. Agents commu-
nicate information by message exchange as in the previous algorithm.

To our knowledge no language that combines communicating sequential pro-
cesses, to the extent that Cspcons does, with constraints has been proposed in
the literature till now.

3 The Csp-ii Prolog

The Csp-ii distributed Prolog system is being developed since 1995 [2],[3]. The
syntax and the built-in procedures of the language follow those of the standard
Prolog (ISO/IEC 13211-1); furthermore the language is extended with features
like modularity, multitasking, real-time programming and network communica-
tion.

The main feature of the Csp-ii system is that it supports the communicat-
ing sequential process [7] programming methodology in a Prolog environment.
Processes run in parallel and communication between them is achieved through
message passing over channels. This process-based model allows the implemen-
tation of parallel and distributed algorithms.

The channel-based communication has been extended with networking capa-
bilities over the TCP/IP protocol, thus providing the ability to establish con-
nections between different Csp-ii applications across the Internet. Furthermore,
under this schema Csp-ii also provides communication with foreign (non CS-
Prolog) applications, an interface to relational data base systems, real-time pro-
gramming methods like cyclic behavior, reaction to predefined events, timed
interrupts, etc.

The system consists of three main components: a compiler, a linker and a
runtime system. The Prolog source is compiled into a binary format containing
the WAM code, although in some points different. This code is interpreted by a
”byte code interpreter” when executing the CS-Prolog runtime system. Among
other things the system includes a pre-processor similar to what is found in
C compilers and an integrated development environment with a multi-window
trace utility.

3.1 Csp-ii Processes

Csp-ii processes are defined as the execution flow of a Prolog goal and every
process has its own Prolog execution environment and dynamic database. Thus
the progress of a process is independent of the execution of other processes. This
separation of dynamic databases ensures that Csp-ii processes may have influ-
ence on each other only by the Csp-ii provided communication techniques, i.e.
channels, events and interrupts, or through external objects like files. On a single
processor machine a time-sharing scheduler controls the concurrent processes.

Processes are identified by a unique system-wide symbolic name. Two kinds
of processes are provided:

– self-driven or normal processes, which is the most usual kind.
– event-driven or real time processes.

A self driven process is characterized by its (Prolog) goal; after its creation,
it will begin the execution of this goal. The non-fatal termination of a self-
driven process is determined by the termination of its goal. At the moment of
its termination the process disappears from the Csp-ii system and will never
reappear.

A real time process is characterized by one goal for the initialization, one
goal for the event handling and by the description of the events that trigger its
execution. The initialization goal is executed once and provides the means for
performing any necessary setup actions. After the successful termination of the
initializing goal the process switches to a cyclic behavior. From that moment on
it is controlled by the incoming events. For every real time process, the incoming
events are gathered in a separate first-in-first-out input queue, from which the
process consumes them by initiating its event-handling goal. The number of
events that real time processes can be triggered for is unlimited. The successful
termination of a process is signaled by the failure of its event-handling goal.
Such termination is considered as regular; it does not affect the overall success
or failure of the application.

Inter-process communication is achieved by synchronous messages or by event
passing. Messages are passed through communication channels. A message can
be any Prolog term except a single unbound variable, however compound terms
containing unbound variables are allowed. Communication channels act as system-
wide available resources, identified by unique names and may appear and disap-
pear dynamically during the program’s lifetime. A channel implements an one
way communication between two processes. In such a connection one process
has the sending end of the channel and the other the receiving end. The total
number of channels in the system and the number of the channels a process can
be connected to are unlimited.

As stated events serve for triggering real time processes and are also identi-
fied by system-wide unique names. They can be generated explicitly by built-in
predicates or implicitly by the internal clock of the Csp-ii scheduler. The latter
allows to invoke execution of the real-time process in specific time intervals. The
number of the available events in a program is unlimited. It should be noted
that every occurrence of an event may have an optional data argument that can
be used to provide some additional information. The event data is an arbitrary
Prolog term, except the case of a single unbound variable.

Finally it should be noted that processes can backtrack, however communi-
cation is not backtrackable.

3.2 TCP/IP Communication

As a natural extension of the original inter-process channel concept, the external
communication conceptually consists of message streams. In order to facilitate
speed-up of external communication, asynchronous message passing is intro-
duced as an option. The send operation in this case still remains blocking but
the condition for continuing execution is the availability of sufficient buffer space
instead of the commencement of the matching receive operation.

For the Prolog programmer the communication environment appears as a
homogeneous address space (community) in which all fellow applications (part-
ners) are accessed via channel messages. A separate mechanism is introduced for
connecting channels to other Csp-ii applications. Two notions are introduced in
this mechanism: the port and the connection.

A port represents an incoming message substream. This entity should not
be confused with the normal TCP/IP port. A Csp-ii port is the entry point
of all incoming messages for the local application. It is explicitly created by a
corresponding predicate and a local channel is associated with it at the time
of its creation. The application receives all messages through that channel. A
parameter set during port creation determines the size of the message buffer so
that asynchronous communication can take place.

A connection is the representation of an outgoing message stream. It is also
explicitly created by the programmer and is associated with a partner’s port
to where it forwards all outgoing messages that it receives from a specific local
channel of the sender application. All previous information is defined at the cre-
ation of the connection, including a parameter indicating the number of messages
stored in the connection buffer.

In order to be able to communicate with a partner, a configuration process
has to be performed using a special built-in predicate. Though this, all necessary
network information of the partner is defined, i.e. its name, port, IP address or
hostname, IP port it listens to, etc. Although this operation requires detailed
knowledge of the partner’s network information, it provides a more versatile
connection schema. We are currently considering the idea to introduce some sort
of naming service in a future version, however this will not require modifications
of the current communication model, since it will be added in the form of a
simple Prolog library.

A Csp-ii application can also establish communication with a non-Prolog
application through an appropriate mediator, that handles all data and proto-
col conversions. Currently Csp-ii supports an ASCII mediator for plain text
communication and one for communication with a specific network management
platform (HNMS).

Csp-ii has been successfully employed in the development of a distributed
expert system for the management of a TCP/IP based WAN [13].

4 Extending the Csp-ii Framework for Constraint
Programming

Cspcons is an extension of the Csp-ii system that inherits all its advanced
features and at the same time provides constraint solving capabilities.

The system consists of two main subsystems: the solver and the core. The
solver is responsible for maintaining the constraint store and performing any
constraint related tasks, i.e. is responsible for storing domain variables and the
set of constraints as well as for constraint propagation. It should be noted that
several solvers are allowed to each program. The core is the extended Csp-ii
system that keeps track of the active instances of the different solvers, dispatches
requests originated by the Prolog program to the appropriate solver instance,
and performs other system-related tasks, including all normal Prolog predicate
calls.

In general, each Cspcons process can have active instances of several differ-
ent solvers, as for example an FD and a Linear solver. However the set of con-
straints and domain variables maintained by instances of a solver that belong to
different processes are independent of each other, resulting to a communicating
sequential CLP system.

In order to support the above model, Cspcons introduced to the original
Csp-ii system a new set of built-in predicates, an appropriate C interface be-
tween the core and the solver and a new variable type, called constraint variable.

The CLP-related predicates that are defined in the new built-in predicate set
can be divided into three groups. The first group is concerned with the term type
system extension, i.e. their use is the identification of constraint variables. The
second group consists of the solver-independent predicates used for obtaining in-
formation about the installed solvers and selecting a particular solver. The third
group consists of the ”normal” interface predicates used for the introduction of
new domain variables, constraints and for labeling. The predicates in the third
group require cooperation between the core subsystem and the particular solver
that is currently selected. This cooperation is achieved through a dedicated for
the purpose C language interface.

Solvers are implemented in the form of linkable C libraries. Each solver must
expose for the core a table containing pointers to specific functions (entry points).
These entry points are mainly implementations of the normal interface predi-
cates, i.e. a CLP related predicate call corresponds to an entry point. For example
the clp constraint/1 predicate used to introduce new constraints in a program
corresponds to the constraint() entry point function. However the implemen-
tation of the entry points depends on the use of a set of functions provided by the
core, called callback functions, that provide various services such as constraint
variable creation and removal, introduction of new trail points in the backtrack
stack, etc.

Finally, constrained variables are introduced as a new term type in the orig-
inal set of term-types. They are always associated with a corresponding internal
variable of the solver. Their creation and removal is the responsibility of the
solver, who requests it by appropriate callback function calls from the core.
Upon unification of a constraint variable to a term in a Prolog program three
cases can occur, depending on the state of the variable:

– If the unification involves a constraint and a normal unbound variable then
it simply succeeds and the latter simply refers to the former in the compu-
tations that follow.

– If the variable is fixed to a specific value then unification is handled by the
core. The solver in this case is called by a special entry point only to inform
the solver about the status of the variable and its value if it is fixed.

– If the variable is being unified with another constraint variable or any other
term then the unification is the responsibility of the solver who treats it as
a newly introduced equality constraint. The solver in this case is called via
an appropriate entry point and must either add the new constraint to the
store if it is consistent or simply reject it, yielding a unification failure.

4.1 The Cspcons Execution Model

The solver subsystem is initialized when the first constraint predicate call is
issued by the user program in the process. The solver instance starts with an
empty system of constraints and during forward execution, new constraints are
incrementally added to the model. The solver evaluates the resulting constraint
set and if it is consistent, it accepts the additions and the call succeeds, otherwise
rejects them, i.e. the call fails. If the predicate, which passes the new constraint
succeeds, then all unbound variables occurring in the passed constraints become
constrained variables and their behavior during unification is determined through
a solver-core cooperation.

If the Prolog program backtracks over a CLP-predicate call or a unification of
a constraint variable, the solver must revert to the state that was in effect before
that call. Thus the state of the constraint store maintained by a solver instance
must be synchronized with the state of the evaluation stack of the Prolog host
process. Any change in the constraints store caused by the evaluation of a CLP-
predicate or a unification involving constrained variables must be ”undone” when
the interpretation backtracks over the predicate that originated the change.

In the Cspcons system there are two trail stacks: the core and the solver
trail. The first is used by the Prolog interpreter itself for registering normal
variable bindings that should be undone during backtracking. The solver trail is
used for registering changes in the constraint store. To achieve synchronization
between these two areas the interface offers the ability to introduce identifiers of
the solver trail to the core trail. On backtracking a special entry point function
(backtrack()) is invoked and an identifier is passed back to the solver as argu-
ment to this function. The identifier indicates the appropriate stack level that
the solver should backtrack to. Any necessary actions for restoring the state of
the constraint store are organized based on this information.

The model offers independence of the code concerning the constraint handling
and provides the means to easily extend the system to support any constraint
domain. Currently Cspcons supports a finite domain solver while there also
exists an experimental linear equations-disequations solver.

4.2 The Finite Domain Solver

Since our main aim was to test the ideas and the extension model, the imple-
mentation of the FD solver had to be kept as simple as possible. Thus the solver
was based on the AC-3 [8] algorithm. Although the latter is not considered state
of the art, it was selected due to its simplicity.

Currently the solver supports constraints of the form: x ∈ {n1, n2, .., nm}
and exp1 R exp2 where {n1, n2, .., nm} is a set of natural numbers, R ∈ {=, 6=
, <, >,≥,≤} and exp1, exp2 are linear expressions on constraint variables. All
constraints are posted through the clp constaint/1 predicate as shown in the
following examples:

clp_constraint([X in [1..10], Y in [1..10]]),
clp_constraint([3*X < 2*Y +10]),

All unary and binary constraints are handled internally by the consistency al-
gorithm. Higher arity constraints are delayed until they become ground and are
then handled as unary constraints. The solver also provides a set of predicates
for labeling including one that uses the fail-first principle.

As mentioned in a previous paragraph backtracking involves synchronizing
the solver and the core trail. The solver trail stack contains entries that belong
to four types. Two of them concern variable creation and constraint addition,
and the third type concerns value removal, while the last type records constraint
variable unification with an integer. Upon value removal only a pointer to the
specific value is recorded. This pointer is sufficient for restoring the value since
what is required is flipping the valid field of the structure that stores the value.
Each trail entry has an identifier associated with the core trail entry according
to the extension model described above. Multiple solver trail entries can share
the same identifier value since they belong to the same choice point and thus
the core trail is not overtaxed with entries.

It should be noted that the implementation has been tested on a variety
of benchmarks, including the well-known cryptarithmentic and alpha problems
and some artificial ones and has performed adequately. However the system
performance cannot be compared with systems such as ECLIPSE or SICStus
that employ far more sophisticated constraint handling algorithms.

5 Solving the N-Queens Problem

To show the suitability of the proposed system for the implementation of any
distributed CSP program, we have implemented a single process and two multi-
process versions of the well-known N-Queens problem. The single process version
is in fact the standard implementation of the problem but without using the
first-fail principle.

The multi-process versions consist of two independent processes each having
its own store. Both versions divide the problem of N Queens in half, assigning N/2
Queens to each process. On each subset of these variables local constraints are
applied, stating the relations between N/2 Queens in a (N/2)xN chessboard. A
priority is set between the two processes having one of them assigning values first
and passing them via a channel to the second process. Messages are passed via
inter-process channels, since the program is executed in the same host, however
the implementation of TCP/IP communication between processes of different
hosts is straightforward.

The two versions implement different search algorithms between the two in-
dependent processes. The first version employs synchronous backtracking (SB),
as that is described in [14], to solve the problem. Under the synchronous back-
tracking algorithm the first process instantiates its variables to consistent values
according to the local constraints and communicates them to the second process.
The latter upon reception of this partial solution, introduces to the store new
constraints based on the set of values received and searches for a solution. If
such a solution is found then the program terminates with success otherwise a

backtrack message is passed back to the first process. The above loop continues
until a solution is found.

The second version is an enhancement of the synchronous backtracking al-
gorithm (ESB). In this algorithm the sender process communicates the value of
a variable as soon as it is instantiated, i.e. at each step of the labeling phase. To
achieve early pruning of inconsistent values, the sender process remains blocked
after the transmission of the message, until the receiver process responds with
an acceptance or rejection of the value. In order to provide such a response
the receiver process introduces to the store all constraints that derive from the
received value.

When all variables of the first process are instantiated an end message is sent
to the second process which in turn searches for a solution. If such is found then
the program terminates with success, otherwise it sends a backtrack message
to the sender process and backtracks itself to the last choice point. However

End of labeling for P1. P2

consistent set is found.
starts labeling but no

is rejected.
P1 transmits a Value and

P1 transmits a Value and .
is accepted.

P1 transmits a Value and

values for X3 so P1 backtracks
and informs P2.

is rejected. No more available

End of labeling for P1. P2 was

Program termination.

able to find a consistent
solution.

T
IM

E

...

...

...

solution

end

backtrack

(X3,N3)

(X2,N2)

ok
(X,N)

end

...

backtracking

nogoood

nogoood

Process1 Process2

Fig. 1. Message exchange in the Multi-process version.

since the sender process might backtrack not only over the last choice point
but also over previous points, the receiver has to be notified so that it can it
turn remove any constraints from the store that were introduced because of
the previous values transmitted. This extra synchronization is achieved by an
appropriate backtracking message sent by the first process to the second. If for
some reason no solution can be found, the first process sends a failure message
to the second indicating that no valid values were possible to be found. The
types of messages that are exchanged under in the ESB algorithm are listed in
Table 1. Message exchange is shown in Figure 1. We have run several tests for
the above versions for various number of queens from N=8 to 28. Speedups for
various N compared with the single process version are shown in Figure 2.

Table 1. Types of Messages

Message Description

value(X) Transmission of a value X, to which a variable was instantiated.
ok Acceptance of a value.

nogood Rejection of a value.
backtrack No labeling found for local variable set. Backtracking of sender

process is forced.
backtracking Sender process informs backtracking over a previous choice

point.
end The first process has finished with the assignment of values.

solution Reporting that a consistent solution was found.
failure No solution was found. Program termination.

As shown in the figure the multi-process versions are less efficient for a small
number of queens justified by the fact that the communication overhead for these
cases is comparable to the actual time of computing the solution. However as
the number of queens grows the situation is reversed. The speedup obtained is
justified by the fact that each process has to solve an easier problem compared
to the full N queens problem.

As expected the ESB version performs significantly better that the simple
synchronous version, since communicating each value as soon as it is instantiated
allows early detection of inconsistencies.

�

��� �

�

� � �

�

��� �

�

� � � � � � 	 �
 � � ��� ��� ��	 ��
 ���

Number of Queens

S
p

ee
d

U
p

��������

� ��������

Fig. 2. Speed Up of the Multi-process versions.

6 Conclusions and Future Work

The Cspcons language, presented in this paper, offers a suitable platform for
the development of any DCSP application. Programming through the use of
communicating sequential processes and constraints in a logic programming en-
vironment can successfully address the issues of easily developing applications
that require agent based program distribution and communication. In such an
application each agent can be an independent Cspcons process that exchanges
messages with other agents in order to achieve a global consistency.

One of the main points that we are going to concentrate on, is the implemen-
tation of a more efficient FD solver. Our plans include the implementation of
either the indexical approach to constraint solving or the incorporation of new
arc consistency algorithms.

We are currently investigating the implementation of other DCSP algorithms
as for example those reported in [15],[4] and in [11]. Such implementation might
require both further development of the constraint solver or the introduction of
new programming facilities. One of the main issues that has to be addressed
is to provide to the programmer the necessary primitives in order to declare
which agents share variables under which constraints and propagate messages
automatically. Our ambition is to develop a framework that will relieve the
programmer of the burden to explicitly encode all the above and just concentrate
on the program development.

Possible areas of application include distributed planning and scheduling.
Our immediate plans also include the development of a distributed scheduling
application for university course scheduling, that will fully test the potential of
the current implementation of the language.

References

1. D. Cabeza and M.Hermenegildo. Distributed Concurrent Constraint Execution in
the CIAO System. In Proceedings of the 1995 COMPULOG-NET Workshop on
Parallelism and Implementation Technologies, U. Utrecht / T.U. Madrid, Septem-
ber 1995.

2. Ivan Futo. Prolog with Communicating Processes: From T-Prolog to CSR-Prolog.
In D.S. Warren, editor, Proceedings of the 10th International Conference on Logic
Programming, pages 3–17. The MIT Press, 1993.

3. Ivan Futo. A Distributed Network Prolog System. In Proceedings of the 20th
International Conference on Information Technology Interfaces, ITI 99, pages 613–
618, 1998.

4. Y. Hamadi, C. Bessière, and J. Quinqueton. Backtracking in Distributed Con-
straint Networks. In Henri Prade, editor, Proceedings of the 13th European Confer-
ence on Artificial Intelligence (ECAI-98), pages 219–223, Chichester, August 23–28
1998. John Wiley & Sons.

5. M. Hermenegildo, F. Bueno, D. Cabeza, M. Garcia de la Banda, P. Lopez, and
G. Puebla. The CIAO Multi-Dialect Compiler and System: An Experimentation
Workbench for Future (C)LP Systems. pages 65–85, April 1999.

6. M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables in the
Implementation of Concurrent and Parallel Logic Programming Systems. In Leon
Sterling, editor, Proceedings of the 12th International Conference on Logic Pro-
gramming, pages 631–646, Cambridge, June 13–18 1995. MIT Press.

7. C. A. R. Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8):666–677, August 1978.

8. Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8(1):99–118, 1977.

9. T. Nguyen and Y. Deville. A distributed arc-consistency algorithm. Science of
Computer Programming, 30(1–2):227–250, January 1998. Concurrent constraint
programming (Venice, 1995).

10. Marius Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings. Asynchronous Search
with Aggregations. In Proceedings of the 7th Conference on Artificial Intelligence
(AAAI-00) and of the 12th Conference on Innovative Applications of Artificial
Intelligence (IAAI-00), pages 917–922, Menlo Park, CA, July 30– 3 2000. AAAI
Press.

11. M.C. Silaghi, D. Sam-Haroud, and B.V. Faltings. Maintaining hierachical dis-
tributed consistency. In EPFL, editor, Proceedings of the CP2000 Workshop on
Distributed Constraint Satisfaction, Tech. Report # 00/338, 2000.

12. Bo-Ming Tong and Ho-Fung Leung. Data-parallel concurrent constraint program-
ming. The Journal of Logic Programming, 35:103–150, 1998.

13. I. Vlahavas, N. Bassiliades, I. Sakellariou, M. Molina, S. Ossowski, I. Futo, Z. Pasz-
tor, J. Szeredi, I. Velbitskiy, S. Yershov, S. Golub, and I. Netesin. System Architec-
ture of a Distributed Expert System for the Management of a National Data Net-
work. In Fausto Giunchiglia, editor, Proceedings of the 8th International Conference
on Artificial Intelligence: Methodology, Systems, and Applications (AIMSA-98),
volume 1480 of LNAI, pages 438–451, Berlin, September 21–23 1998. Springer.

14. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The
Distributed Constraint Satisfaction Problem: Formalization and Algorithms. IEEE
Trans. on Knowledge and Data Engineering, 10(5):673–685, 1998.

15. Makoto Yokoo and Katsutoshi Hirayama. Algorithms for Distributed Constraint
Satisfaction: A Review. Autonomous Agents and Multi-Agent Systems, 3(2):185–
207, June 2000.

16. Ying Zhang and Alan K. Mackworth. Parallel and Distributed Finite Constraint
Satisfaction: Complexity, Algorithms and Experiments. Technical Report TR-92-
30, Department of Computer Science, University of British Columbia, November
1992.

