
Applying a Distributed CLP Platform to a
Workforce Management Problem

Ilias Sakellariou, Fotios Kokkoras and Ioannis Vlahavas
Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki Greece

Email:
�
iliass,kokkoras,vlahavas � @csd.auth.gr

Abstract— The work presented in this paper concerns the ap-
plication of CSPCONS, a distributed constraint logic programming
platform to a workforce management problem, namely the BT-
250-118 problem instance. The latter is a well-studied problem
instance in which the requirement is to create sequences of
job locations for the technicians to visit (tours), so as to serve
as many jobs as possible, minimizing at the same time the
travel duration. CSPCONS is a logic programming platform that
supports program execution over multiple Prolog processes with
constraints. It offers channel-based communicating processes
and TCP/IP communication and is based on the CSP model
introduced by Hoare. This paper demonstrates its applicability
to such complex Distributed Constraint Satisfaction problems.

I. INTRODUCTION

Constraint programming has undoubtedly proved to be a
suitable platform for tackling large combinatorial problems.
It has been applied with success to a number of industrial
applications as for example scheduling, resource allocation,
etc. Unfortunately, even with the most advanced techniques,
solving such problems is both space and time costly.

However, finding solutions for large problems is sometimes
most advantageously carried out as the joint responsibility of
multiple agents. For example, a multiple agent approach can
be essential when the areas of expertise relevant for solving
the problem do not reside in any single agent but are found
among multiple heterogeneous agents. Alternatively, a group
of identical or similar agents might be employed for the
purpose of finding a solution faster than it can be accomplished
by a single problem-solver. Such a multi-agent system might
be one in which the agents all work in parallel on the entire
problem and share hints with each other, or it might be one
in which the problem is subdivided among the agents. In
the latter case, each agent works on solving its part of the
entire problem, within some framework of interaction with
the other agents, and eventually the subproblem solutions are
recombined in some way to solve the overall problem.

When a problem is subdivided among multiple agents, the
way in which the agents find, share and use partial results can
greatly affect the overall efficiency of the problem solving
effort, either positively of negatively. If all communication
of subproblem solution is postponed to the termination of
problem solving, incompatibilities might force some or all
of the agents to redo work already done. Had the agents
communicated their partial results earlier, they might have
used each others’ partial solutions to direct their efforts, so

that upon completion the final solution would be globally
consistent.

On the other hand, early communication of subproblem
solutions or partial solutions can steer other agents in a
counterproductive direction. If a communicated solution that is
ultimately inconsistent with any global solution is incorporated
by another agent and used to guide its problem solving, that
agent can spend a lot of time until it discovers that there is no
solution in that direction. Alternatively, a consistent solution
might be found, but it might be of lower overall quality than
if the agent had worked more independently earlier.

Workforce scheduling problems belong to this class. In the
general case, such a problem can be considered as a multi-
TCTSP (Time Constrained Traveling Salesman Problem). A
TSP involves selection of the shortest route among a number of
locations to be visited, subject to the constraints that the person
must return to the starting point at the end of his/her journey,
and can visit each location only once. A time constrained TSP
involves additional time related constraints that need to be
satisfied (e.g. some jobs must be done in the afternoon).

CSPCONS is a logic programming platform for building
multi agent systems. It is an extension of the Communicating
Sequential Prolog II (CSP-II), a version of Prolog that is
based on the notion of communicating sequential processes.
CSPCONS supports independent CLP processes each having
its own constraint store that communicate through message
exchange over channels, both between processes that reside in
the same host and on different hosts over TCP/IP networks.
The system can be easily extended to support new algorithms
for constraint solving thus permitting the addition of new
constraint domains. The current version includes a library for
constraint satisfaction over finite domains (FD) and a linear
solver. The combination of the channel based communication
and constraint satisfaction, all under the logic programming
framework, offers a powerful platform for the rapid imple-
mentation of any agent based CSP application.

This paper presents the application of CSPCONS to a
workforce management problem instance presented by BT. It
involves finding an assignment of sequences of repair jobs
to technicians, each technician belonging to some base. The
solution must assign as many jobs as possible and keep
the travel duration to a minimum. The approach adopted
to solve the problem can be applied to all problems that
involve allocating technicians to jobs that are distributed over
a geographic area.

The rest of the paper is organized as follows. Section II
briefly presents related work in the field of distributed con-
straint satisfaction. The CSPCONS platform is briefly presented
in Section III. Section IV describes in detail the workforce
management problem instance and the approach we have
followed to solve it. Finally conclusions and future work are
stated in section V.

II. DISTRIBUTED CONSTRAINT SATISFACTION PROBLEMS

A constraint satisfaction problem (CSP) consists of finding
an assignment of values from a given domain to a set of
variables, such that a set of constraints on the variables
is satisfied. More formally a constraint satisfaction problem
consists of:
� a set of variables

���������
	��� � � ���
�
� a set of domains � each associated with a variable
� ��� � 	��� � � � � �� a set of constraints that impose restrictions on the
values that the variables can take. A constraint������������� � � ���������������! #"

can be defined by a predicate
on the Cartesian product � ���$ � ��%$&� � �
$ � �� and is
true on a subset of this product.

A distributed constraint satisfaction problem is a CSP
in which the variables/constraints are distributed over some
network of agents. Agents are constraint solvers which co-
operate to solve the original problem. The need for distributed
constraint programming applications derives mainly from two
facts: a) more efficient implementations, in terms of exe-
cution time, can be achieved by decomposing the original
problem into subproblems and b) representing problems that
are naturally distributed is significantly facilitated, as for
example production planning in a factory in which independent
departments must meet their local constraints and at the same
time co-operate to achieve global constraints.

A number of approaches have been reported to the litera-
ture that address the issue of building distributed constraint
programming applications. In the sequel we will restrict our
presentation to systems that belong to the logic program-
ming framework that are closely related with the CSPCONS

approach.
The CIAO language[1] follows a blackboard architecture

that is described in [2]. CIAO is a system based in Prolog
extended with constraints, parallelism and concurrency. The
distributed execution facilities are based on the Linda library
for implementing communication between processing units
(referred to as workers), i.e. it adopts a blackboard architecture
and the use of attributed variables[3].

A different approach to solving CSP problems in parallel
has been proposed by Tong and Leung in [4]. Their model,
called Firebird, is based on an extension of the Andorra
principle and is an attempt to build a concurrent constraint
logic programming system on a massively parallel SIMD
computer, that will exploit OR-Parallelism. In Firebird execu-
tion interleaves between indeterministic derivation steps that
consist of guard tests, commitment and spawning in the same
manner as committed-choice languages and non-deterministic

derivation steps which consist of setting up a choice point on
a domain variable and attempting all the alternative values in
its domain in an OR-parallel manner.

To our knowledge no language that combines communicat-
ing sequential processes, to the extent that CSPCONS does,
with constraints has been proposed in the literature till now.

III. THE CSPCONS PLATFORM

The CSPCONS [5] platform is based on the CSP-II , the
communicating Sequential Prolog II that is being developed
since 1995 [6],[7]. CSP-II is an excellent platform for building
any agent based distributed logic programming applications
since it offers advanced communication facilities all under the
logic programming framework. The platform has already been
successfully employed in the development of a distributed
expert system for the management of a TCP/IP based WAN
[8].

CSPCONS is in fact an extension of CSP-II that inherits all
its advanced features and at the same time supports constraint
logic programming. Both platforms have extended features like
modularity, multitasking, real-time programming and of course
network communication.

The main feature of the CSP-II and the CSPCONS systems
is that they support the communicating sequential process [9]
programming methodology in a Prolog environment. Processes
run in parallel and communication between them is achieved
through message passing over channels. This process-based
model allows an elegant implementation of any parallel and
distributed algorithms.

The channel-based communication has been extended with
networking capabilities over the TCP/IP protocol, thus provid-
ing the ability to establish connections between applications
residing in different hosts across the Internet. Furthermore,
under this schema a plethora of features are provided such
as communication with foreign applications, an interface to
relational data base systems, real-time programming methods
like cyclic behavior, reaction to predefined events, timed
interrupts, etc.

A. CSPCONS Processes

CSPCONS processes are defined as the execution flow of a
Prolog goal and every process has its own Prolog execution
environment and dynamic database. Thus the progress of a
process is independent of the execution of other processes.
This separation of dynamic databases ensures that CSPCONS

processes may influence on each other only by the specified
communication techniques, i.e. channels, events and interrupts,
or through external objects like files.

In general, each CSPCONS process can have active instances
of several different solvers, as for example an FD and a
Linear solver. However the set of constraints and domain
variables maintained by instances of a solver that belong to
different processes are independent of each other, resulting to a
communicating sequential CLP system. On a single processor
machine a time-sharing scheduler controls the concurrent
processes.

This process independence makes the platform a excellent
tool for prototyping any agent based application: agent so-
cieties are developed as communicating CSPCONS processes,
can be fully tested on a single host and then with minor ex-
tensions to the code can be ported to their target environment.

Processes are identified by a unique system-wide symbolic
name. Two kinds of processes are provided:
� self-driven or normal processes, which is the most usual

kind.� event-driven or real time processes.

A self driven process is characterized by its (Prolog) goal; after
its creation, it will begin the execution of this goal. The non-
fatal termination of a self-driven process is determined by the
termination of its goal. At the moment of its termination the
process disappears from the CSPCONS system and will never
reappear.

A real time process is characterized by one goal for the
initialization, one goal for the event handling and by the
description of the events that trigger its execution. The ini-
tialization goal is executed once and provides the means for
performing any necessary setup actions. After the successful
termination of the initializing goal the process switches to a
cyclic behavior. From that moment on it is controlled by the
incoming events. For every real time process, the incoming
events are gathered in a separate first-in-first-out input queue,
from which the process consumes them by initiating its event-
handling goal. The number of events that real time processes
can be triggered for is unlimited. The successful termination
of a process is signaled by the failure of its event-handling
goal. Such termination is considered as regular; it does not
affect the overall success or failure of the application.

Inter-process communication is achieved by synchronous
messages or by event passing. Messages are passed through
communication channels. A message can be any Prolog term
except a single unbound variable, however compound terms
containing unbound variables are allowed. Communication
channels act as system-wide available resources, identified by
unique names and may appear and disappear dynamically dur-
ing the program’s lifetime. A channel implements an one way
communication between two processes. In such a connection,
one process has the sending end of the channel and the other
the receiving end. The total number of channels in the system
and the number of the channels a process can be connected to
are unlimited.

As stated, events serve for triggering real time processes and
are also identified by system-wide unique names. They can be
generated explicitly by built-in predicates or implicitly by the
internal clock of the CSPCONS scheduler. The latter allows
to invoke execution of the real-time process in specific time
intervals. The number of the available events in a program
is unlimited. It should be noted that every occurrence of an
event may have an optional data argument that can be used
to provide some additional information. The event data is an
arbitrary Prolog term, except the case of a single unbound
variable.

Finally it should be noted that processes can backtrack,
however communication is not backtrackable.

B. TCP/IP Communication

As a natural extension of the original inter-process channel
concept, the external communication conceptually consists of
message streams. In order to facilitate speed-up of external
communication, asynchronous message passing is introduced
as an option. The send operation in this case remains blocking
but the condition for continuing execution is the availability
of sufficient buffer space instead of the commencement of the
matching receive operation.

For the Prolog programmer the communication environ-
ment appears as a homogeneous address space (community)
in which all fellow applications (partners) are accessed via
channel messages. A separate mechanism is introduced for
connecting channels to other CSPCONS applications. Two
notions are introduced in this mechanism: the port and the
connection.

A port represents an incoming message substream. This
entity should not be confused with the normal TCP/IP port. A
CSPCONS port is the entry point of all incoming messages for
the local application. It is explicitly created by a corresponding
predicate and a local channel is associated with it at the
time of its creation. The application receives all messages
through that channel. A parameter set during port creation
determines the size of the message buffer so that asynchronous
communication can take place.

A connection is the representation of an outgoing message
stream. It is also explicitly created by the programmer and is
associated with a partner’s port. There it forwards all outgoing
messages that it receives from a specific local channel of the
sender application. All previous information is defined at the
creation of the connection, including a parameter indicating
the number of messages stored in the connection buffer.

In order to be able to communicate with a partner, a
configuration process has to be performed using a special built-
in predicate. Though this, all necessary network information
of the partner is defined, i.e. its name, port, IP address or host-
name, IP port it listens to, etc. Although this operation requires
detailed knowledge of the partner’s network information, it
provides a more versatile connection schema. We are currently
considering the idea to introduce some sort of naming service
in a future version, however this will not require modifications
of the current communication model, since it will be added in
the form of a simple Prolog library.

At any given time the status of each agent in the community
is known to all fellow agents via an alert mechanism: changes
in the status of an agent trigger network related events to the
fellow agents participating in the community, thus informing
them of the change that took place, as for example the non-
availability of an agent.

A CSPCONS application can also establish communication
with a non-Prolog application through an appropriate mediator,
that handles all data and protocol conversions. Currently

CSPCONS supports an ASCII mediator for plain text commu-
nication and one for communication with a specific network
management platform (HNMS).

C. Constraints in CSPCONS

The CSPCONS system consists of two main subsystems: the
solver and the core. The solver is responsible for maintaining
the constraint store and performing any constraint related
tasks, i.e. is responsible for storing domain variables and the
set of constraints as well as for constraint propagation. The
core is the extended CSP-II system that keeps track of the
active instances of the different solvers, dispatches requests
originated by the Prolog program to the appropriate solver
instance, and performs other system-related tasks, including ll
normal Prolog predicate calls.

The design aim behind such a model was to allow the
introduction of new constraint handling facilities easily. The
solver is in fact a C linkable library that implements a set of
function calls defined by the CLP-Interface of CSPCONS .

The model offers independence of the code concerning
constraint handling and provides the means to easily extend the
system to support any constraint domain and any algorithm.
Currently CSPCONS supports a finite domain solver and a
linear equations-disequations solver.

1) The Finite Domain Solver: Finite domains (FD) con-
straints are one of the most studied areas of constraint pro-
gramming. This is not surprising since 95% of industrial
applications employ FD constraints, undoubted evidence that
a large variety of problems that can be modeled using the
specific domain. A large number of algorithms have been
proposed in the literature that aim to remove a inconsistent
values from domain variables in order to prune the search
space and allow an efficient solution of large combinatorial
problems.

The CSPCONS FD solver was based on the AC-3 [10]
algorithm. Although the latter is not considered state of the
art, it was selected due to its simplicity.

Currently the solver supports constraints of the form:
���

� "�����"�	��� � ��"�� � and � ��� � � � ���
	 where
� "�����"�	��� � ��"�� �

is a set of natural numbers,
��� ��� ���� � ��
	��
���
� � and� ��� ��� � ���
	 are linear expressions on constraint variables.

All constraints are posted through the clp constaint/1
predicate as shown in the following examples:

clp_constraint([X in [1..9],Y in [1..9]]),
clp_constraint([3*X < 2*Y +10]),

All unary and binary constraints are handled internally by
the consistency algorithm. Higher arity constraints are handled
by a bounds consistency algorithm. A set of predicates for
labeling including labeling with heuristics, such as the fail-
first principle, most-constraint principle, etc is also available.

It should be noted that the implementation has been
tested on a variety of benchmarks, including the well-known
NQueens, Golomb-rulers, cryptarithmentic and alpha prob-
lems and has shown adequate performance.

IV. THE BT WORKFORCE SCHEDULING PROBLEM

In the BT workforce scheduling problem [11] (dataset RD-
250-118 [12]), the requirement is to create sequences of job
locations for the technicians to visit (tours), so as to serve as
many jobs as possible, minimizing at the same time the travel
duration.

More specifically (Fig 1), there are 11 BT bases at different
locations each one having a number of technicians. There is a
total of 118 technicians, each one working on a certain time
frame and having a skill factor that affects the time it takes for
the technician to accomplish a job. There is a total of 250 jobs,
each one located at a certain location and requiring specific
time for an average technician to accomplish. In addition,
most jobs are constrained over time, that is, some of them are
morning jobs, some other must be first in a tour, etc. Finally,
for each job, there is a list of engineers associated with it that
indicates which of them are qualified to do the job.

The travel time between two locations with coordinates (
� �

, �
) and (

� 	
,

	

) for a technician � is given by the following
function:

��� � � � � 	 ��� � ��� � 	 �
��� ����
	 � ����
if � � ���&� 	 � 	 � ����
	 � , otherwise the distance is given

by the function:

��� � � � � 	 ��� ����
	 �
��� � ��� � 	 � ����
The total quality of any given solution to the above problem,

is calculated by the following cost function:

����
! �#"%$'&)(+*, - . � ��� � � �
-
��/�021 *,3 . � � �5476 3 ��8 � ":9<; !)= � $?>@;A9�B

-
where

� �+C
D is the total number of technicians,
��� � � �

-
is

the total travel time of engineer � , Jobs is the total number of
jobs, �5476 3 is the duration of job j, 8 � ":9<; !)= is a constant set
to 60 and

>@;A9�B 3 is set to 0 if job j is allocated to an engineer;
1 otherwise. Strictly speaking, the aim of the problem is to
minimize the cost function.

A. Related Work

The approaches that have been used so far to tackle the
stated problem include simulated annealing [13], genetic al-
gorithms [14], fast local search and guided local search [15],
CLP [11], [16], and finally, CLP with distributed patching
techniques [17]. [11] uses a constraint-based tour generation
algorithm and a heuristic schedule repair technique. Repair
techniques are also used in [14]. The fast local search algo-
rithm in [15] helps to improve the efficiency of hill climbing.
The guided local search helps local search to escape local
optima. Approach [16] avoids a full search and uses heuristics
for the generation of the tours, while in [17], the problem is
partitioned into subproblems that are solved independently to
get a first solution and then distributed patching techniques
are used to further improve this solution.

Fig. 1. Spatial visualization of Jobs, Bases and Personnel

TABLE I

WORKFORCE AND SERVICE CAPACITY OF EACH BASE.

BaseID(s) No of Technicians Service Capacity (min)

1,3,6,7,9,10,11 1 480

2 10 4800

4 34 16320

5 15 7200

8 52 24960

B. Solving Approach

In order to solve the above problem a three phase procedure
was adapted. The first phase concerns partitioning the problem
resulting to a number of subproblems of less complexity. This
clustering phase is followed by a solving phase in which
CSPCONS agents find near-optimal solutions according to the
cost function. Then a purely distributed patching technique
that follows a distributed bidding strategy was employed to
find the final job assignments. Each agent is modelled as
a CSPCONS process and all communication is implemented
using the communication facilities of the system.

1) Clustering Phase: The idea behind clustering is to parti-
tion the problem (data and search space) into sub-problems of
less complexity. As far as these sub-problems are independent,
partitioning reduces dramatically the execution time needed to
solve them, as well. This time saving allows us to use algo-
rithms that are impractical in the case of the whole problem
due to their complexity. The overhead is that, when the sub-
problems are related with constraints on elements belonging to
different sub-problems, additional effort is required to resolve
conflicts.

For the case of the BT workforce problem we decided to use
a large grained partitioning that is base oriented. This reflects
the natural organisation of BT’s services that are also base-
oriented. Thus, we decided to create 11 sub-problems and
assign each of them to one agent/base. Moreover, any idea
about uniformly distributing the jobs to bases was immedi-
ately rejected because the service capacity varies significantly
among bases (see table I).

As a result we decided to use a clustering method that
shares the working time (i.e. the jobs) among bases in a
way proportional to the ratio of the total service capacity of
each base. We also considered the various job types rejecting
this way jobs that were impossible to service due to lack of
qualified personnel.

A ripple like clustering method was developed in which
bases obtain candidate jobs from a common pool in a round-
robin fashion. Each agent (base) has an ordering of all the jobs
according to their distance from itself. In each step the agent
that has the control gets the closest free jobs from the pool. The
number of jobs each agent gets in a single step is proportional
to � � � � � , where

�
is the number of the technicians that belong

to the base. However small bases (
� ���

) get always two jobs
in each step. Additionally, since small bases are next to large
ones, the former are allowed to select jobs first. Obviously,
as soon as a base covers its service capacity it stops selecting
jobs. The overall method terminates when all jobs have been
assigned to some base.

2) Solving Phase: The problem was modeled using finite
domain constraints following the same approach that is re-
ported in [16]. To achieve better results in this phase, the
“closest first” heuristic [16] was used for labeling jobs.

According to the heuristic when a job is going to be labeled,
the candidate engineers are organised into two groups. Those
that are in a good direction related to the job and those that are
in a bad direction. An engineer belongs to the good direction
group if any of the following conditions hold:� the engineer is currently idle;� the engineer has been assigned a job that is in the same

direction as the labelling job;� the engineer has already been assigned more than one job,
among which are at least two jobs in the same direction
as the labelling job.

Two jobs, located at places � � and � 	 , are in the same
direction if the angle

� � ����� 9 � � � 	� is less than 45 degrees.
It should be pointed out that this is the best heuristic in terms
of the cost function but is a bit expensive due to the direction
calculation.

As soon as all agents have completed the solving phase the
patching phase is initiated.

3) Bidding Strategy: The motivation behind our approach
in this phase is to try and fit unscheduled jobs to gaps, i.e.
time frames in tours in which technicians are either on a long
transition or idle. A gap are filled with an appropriate job
resulting in a patch. Thus, during this phase each � B � " !

-
does:

1) Sends/receives the unscheduled jobs to/from the other
agents.

2) For each
� �+C
D

- 3 generates all � 9 �
- 3 � permutations

based on the current tour (named
� � 476

- 3) of
� �+C
D

- 3 .
3) For each � 9 �

- 3 � generates all possible patches (named8 9 ! C
D
- 3 �
) using jobs from all of the unscheduled jobs,

annotated with the gain to the total cost function ob-
tained by serving this job.

4) Sends/receives all patches 8 9 ! C
D
- 3 �
	 to/from the other

agents (bids)

5) Filters out the whole set of patches, removing those that
would be better served by another agent according to
the broadcasted gain values.

6) Uses the remaining of the patches 8 9 ! C
D
- 3 �
	 to update

(patch) the tours
� � 476

- 3
It should be noted that unscheduled jobs that correspond to

patches are inserted to the tour without altering the schedule
found in the solving phase. The above procedure continues
until no further optimization can be performed. In our case
two optimization cycles took place.

C. Results

The system was implemented on a Sun E450 machine
running Solaris. The results obtained are shown in table II.
The table shows the characteristics of the first solution and
the final solution indicating the contribution of each bidding
cycle.

TABLE II

SOLUTION DETAILS BEFORE AND AFTER BIDDING

First Solution Final Solution

Scheduled Jobs 165 190(165+23+2)

Active Techs 63 67(63+4+0)

Total Cost 24912 21948

Figure 2 presents the technician tours that consist the final
solution to the problem. Clusters generated during the first
phase are indicated also.

Fig. 2. Final Solution and Clusters Visualized over the Problem Area

V. CONCLUSIONS AND FUTURE WORK

As demonstrated by the impementation of workforce man-
agement problem the CSPCONS system offers a suitable plat-
form for developing complex DCSP applications. The system
facilities were more than adequate not only to model the
problem but also to implement all communication between the
agents in an elegant declarative way. Although other platforms

also provide communication primitives, those of CSPCONS

are high level and significantly reduce the efford required by
the programmer, allowing him to focus on the problem itself.

We are currently improving the bidding optimization strat-
egy so that only close to the base patches are generated.
This will decrease the effort of the patching algorithm without
decreasing solution quality.

It is also in our plans to add problem specific algorithms as
extensions to the current FD solver and offer them as built-
in predicates, so that programming efford for this class of
problems will be further reduced.

REFERENCES

[1] M. Hermenegildo, F. Bueno, D. Cabeza, M. G. de la Banda, P. Lopez,
and G. Puebla, The CIAO Multi-Dialect Compiler and System: An
Experimentation Workbench for Future (C)LP Systems. Nova Science,
April 1999, pp. 65–85.

[2] D. Cabeza and M.Hermenegildo, “Distributed Concurrent Constraint Ex-
ecution in the CIAO System,” in Proceedings of the 1995 COMPULOG-
NET Workshop on Parallelism and Implementation Technologies, U.
Utrecht / T.U. Madrid, September 1995.

[3] M. Hermenegildo, D. Cabeza, and M. Carro, “Using Attributed Variables
in the Implementation of Concurrent and Parallel Logic Programming
Systems,” in Proceedings of the 12th International Conference on Logic
Programming, L. Sterling, Ed. Cambridge: MIT Press, June 13–18
1995, pp. 631–646.

[4] B.-M. Tong and H.-F. Leung, “Data-parallel concurrent constraint pro-
gramming,” The Journal of Logic Programming, vol. 35, pp. 103–150,
1998.

[5] I. P. Vlahavas, I. Sakellariou, I. Futo, Z. Pasztor, and J. Szeredi, “C
SPCONS: A Communicating Sequential Prolog with constraints,” in
Methods and Applications of Artificial Intelligence, Procs of the 2nd
Hellenic Conference on AI, SETN 2002, ser. Lecture Notes in Computer
Science, vol. 2308. Springer, 2002, pp. 72–84.

[6] I. Futo, “Prolog with Communicating Processes: From T-Prolog to CSR-
Prolog,” in Proceedings of the 10th International Conference on Logic
Programming, D. Warren, Ed. The MIT Press, 1993, pp. 3–17.

[7] I. Futo, “A Distributed Network Prolog System,” in Proceedings of the
20th International Conference on Information Technology Interfaces, ITI
99, 1998, pp. 613–618.

[8] I. Vlahavas, N. Bassiliades, I. Sakellariou, M. Molina, S. Ossowskia,
I. Futo, J. S. Zoltan Pasztor, I. Velbitskiyi, S. Yershov, and I. Netesin,
“ExperNet: An Intelligent multi-agent system for wan management,”
IEEE Intelligent Systems, vol. 17, no. 1, pp. 62–72, 2002.

[9] C. A. R. Hoare, “Communicating Sequential Processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, Aug. 1978.

[10] A. K. Mackworth, “Consistency in Networks of Relations,” Artificial
Intelligence, vol. 8, no. 1, pp. 99–118, 1977.

[11] N. Azarmi and W. Abdul-Hameed, “Workforce scheduling with con-
straint logic programming,” British Telecom Technology Journal, British
Telecom Laboratories, Ipswich, vol. 13, no. 1, 1995.

[12] “RD-250-118 Data Set,” British Telecom Laboratories.
[13] S. Baker, “Applying simulated annealing to the workforce management

problem,” British Telecom Laboratories, Ipswich, Tech. Rep., 1993.
[14] C. Muller, E. Magill, and D. Smith, “Distributed genetic algorithms for

resource allocation,” Strathclyde University, Glasgow, Tech. Rep., 1993.
[15] E. Tsang and C. Voudouris, “Fast local search and guided local search

and their application to british telecom’s workforce scheduling problem,”
Department of Computer Science, University of Essex, Colchester, Tech.
Rep. CSM-246, 1995.

[16] R. Yang, “Solving the workforce management problem with constraint
programming,” in Proceedings of Practical Applications of Constraint
Technology, 1996.

[17] F. Kokkoras and S. Gregory, “D-WMS: Distributed workforce manage-
ment using CLP,” in Proceedings of the 4th International Conference on
the Practical Application of Constraint Technology, PACT 98. Practical
Application Company Ltd., March 1998, pp. 129–146.

