
Simple Distributed Filtering on a CLP Platform

Ilias Sakellariou and Ioannis Vlahavas

Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece.

{iliass, vlahavas}@csd.auth.gr

Abstract. The area of distributed constraint satisfaction has drawn sig-
nificant attention in the past decade. The approaches proposed in the
area can be classified in two large categories: distributed search tech-
niques and distributed filtering techniques. The work described in this pa-
per concerns the CLP implementation of the Dis-SAC algorithm, a novel
distributed filtering technique that is based on the singleton consistency
algorithm. The advantages of the algorithm include a high pruning effi-
ciency and a remarkable simplicity. The latter allows an unproblematic
implementation of the algorithm in any constraint programming platform
that supports network communication, without the need of tampering
with the (low level) consistency algorithm employed. The present paper
briefly describes Dis-SAC along with its implementation in the Cspcons
distributed CLP platform and presents experimental results on a number
of structured constraint problems. The motivation behind this work is
twofold: to support our argument concerning the simple implementation
of the algorithm and to further investigate the benefits of its application
to constraint satisfaction problems.
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1 Introduction

The high interest attracted to the area of constraint satisfaction problems (CSP)
springs from the fact that a wide range of problems from diverse areas such
as artificial intelligence, operation research, design, etc. can be formulated as
constraint satisfaction problems. Informally, a CSP problem consists of finding
an assignment of values to variables, each ranging over a finite domain, such that
this assignment is consistent with a set of constraints imposed on the variables.
The search space of any non-trivial CSP problem is quite large posing an obstacle
to their solution.

Probably the most successful approach to overcome the above problem is
transforming the original CSP to an equivalent one, by filtering out inconsistent
values from the variable domains. This idea lead to the introduction of local
consistency algorithms such as AC3 [1], AC4 [2], AC6 [3], NIC [4] algorithms, to
name a few proposed in the past decade. Local consistency algorithms enforce
different levels of consistency (value pruning efficiency) at a different computa-
tional cost; a review of consistency algorithms can be found in [5].
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Although filtering out values decreases the cost of search, the application of
consistency algorithms can introduce significant delays to the overall solution
process, thus, in some cases, cancel out any benefits obtained. A classic example
is Singleton Consistency [6], a class of filtering methods that demonstrates a high
pruning efficiency but at a high computational cost. An approach to overcome
this problem is to execute the filtering algorithm in a distributed setting.

The Dis-SAC algorithm [7] is a distributed version of the singleton consis-
tency, that follows this approach. The motivation behind the introduction of dis-
tributed singleton consistency (Dis-SAC) is twofold: provide a framework under
which the execution time of applying a strong consistency method is reduced and
also devise a simple distributed consistency algorithm that can be implemented
in any existing constraint programming system without major modifications.
The former allows the efficient application of singleton consistency to a number
of hard problems, while the latter encourages its adoption to a wide range of con-
straint programming platforms, without requiring sophisticated modifications to
the underlying platform. This paper extends our previous work presented in [7]
by presenting the implementation of the Dis-SAC algorithm in a CLP platform
and provide further experiments, to support further these arguments.

The rest of the paper is organized as follows. Section 2 presents related work
of the field. Section 3 briefly describes the Dis-SAC algorithm. Section 4 states
the requirements for implementing the algorithm and briefly describes its im-
plementation on the Cspcons CLP platform. Section 5 presents experimental
results on two structured CSP benchmarks the Golomb rulers and Quasigroup
Completion with Holes problem. Finally, section 6 concludes the paper.

2 Related Work

Reducing the execution time of local consistency techniques via distribution of
the work to a number of co-operating processing units, usually called agents,
has long been the topic of research in the CP community. Approaches that
have been reported in the literature consist mainly of distributed versions of
sequential consistency algorithms. For example, earlier work in the field involved
two massively parallel versions of the AC-4 algorithm [8], as well as three parallel
and distributed algorithms for computing consistency by formulating a CSP as
a dual network [9].

More recently, a coarse-grain distributed version of the AC-4 algorithm, Dis-
AC4, was proposed in [10]. According to Dis-AC4 the problem is distributed
by dividing the variables to a number of agents (workers), which run the same
code but on different data. Each agent initially builds the local data structures
required by the AC-4 algorithm and then inconsistencies detected are treated.
Inconsistencies produced by the agents are broadcasted using a message passing
mechanism. In the same spirit, [11] presents an alternative distributed arc con-
sistency algorithm, the DisAC-9 with minimal message passing, which is based
on the variation of the AC-6 [3] consistency algorithm. In Dis-AC9 only in-



320 Companion Volume

consistencies that induce deletions to the domains of the receiving agents are
communicated, thus the number of messages broadcasted is minimized.

Finally, a set of distributed constraint satisfaction algorithms based on the
notion of chaotic iteration [12, 13] have been proposed [14, 15]. Informally, chaotic
iteration enforces local consistency by using a set of domain reduction functions
(drf) that are applied until no further modifications occur in the variable do-
mains. In a distributed setting, each agent manages a subset of the problem
(drfs and variables) an uses asynchronous message passing to consume and com-
municate changes in their local domain. The work described in [14] presents a
generic distributed chaotic iteration algorithm and its modeling in the Manifold
language.

The Dis-SAC is closely related to the DisAC-4 [10] and DisAC-9[11], in the
sense that it presents a distributed version of a local consistency technique, aim-
ing at improving the execution time of the corresponding sequential algorithm.
The algorithm is similar to the DisAC-4, with the difference that singleton consis-
tency (SAC)[6] is employed for detecting and treating inconsistencies. Thus the
benefits expected from the application of the algorithm are greater, since SAC
enforces a stronger consistency than any arc consistency algorithm. The same
argument holds for the distributed chaotic iteration algorithm; furthermore the
rule based approach to constraint programming that is used in the chaotic itera-
tion algorithm could be impractical when considering problems with large finite
domains, due to the large number of rules (drfs) that have to be generated and
managed.

3 A Simple Distributed Consistency Algorithm

As mentioned above, the Dis-SAC algorithm is a distributed version of the sin-
gleton arc consistency algorithm. Singleton Consistency is a class of filtering
techniques that is based on the fact that for each consistent value di of a vari-
able xi, the subproblem obtained by restricting the domain Di to di is consistent
[6]. Thus if the subproblem is found to be inconsistent by the application of some
local filtering technique, such as arc consistency, then it is safe to remove the
value in question from the domain.

SAC enforces stronger consistency than most other local filtering techniques,
but the cost of applying it, even as a single preprocessing step, is high as demon-
strated by the detailed study found in [16]. In the same work, authors also
demonstrate the benefits of employing a restricted form of SAC which goes
through the variables only once and thus achieves a lesser level of consistency,
but at the same time reducing the overall execution time of the filtering process.

3.1 The Dis-SAC Algorithm

Singleton consistency is an ideal candidate for distributed execution. Singleton
consistency checks on the problem variables can be assigned to different process-
ing elements; this is the main idea behind Dis-SAC. The algorithm consists of
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a community of co-operating agents, in which each agent “knows” the complete
problem but is responsible for a subset of the problem variables (its responsibility
set) on which it enforces singleton consistency. Domain changes (value removals)
produced are broadcasted to all agents in the society. Upon reception of a value
removal message, the agent updates its current view of the problem and enforces
singleton consistency on its responsibility set again. This loop terminates when
no more deletions occur in any variable domain, i.e. the community is in a state
where all agents are idle and have processed the same number of messages. Thus
Dis-SAC is a coarse-grain parallel algorithm in which the maximum number of
agents involved is equal to the size of the problem i.e. the number of variables. It
should be noted that termination detection relies on the existence of scheduling
agent (scheduler) as it is described below.

The algorithm assumes an asynchronous message passing model, in which
agents exchange messages via communication channels, with no message loss
and a finite delivery delay. In this model the send (sendMsg()) operation is non-
blocking, the receive operation can be either blocking (getMsg()) or non blocking
(getMsgNonBlock()) and there exists a broadcast (broadcast()) operation.

An issue that arises and can affect the efficiency of the algorithm is when
should inconsistent values be broadcasted, i.e the communication policy em-
ployed by the algorithm. If the communication of removed values is postponed
until no further changes occur in the responsibility set of the agent, the total
number of messages is minimized at the risk of increasing the idle time of some
agents. Broadcasting removals as soon as they are discovered avoids the idle
agent problem, but introduces the risk of network delays due to a high number
of messages. Detailed descriptions of versions of the Dis-SAC algorithm imple-
menting the above strategies can be found in [7]. This paper investigates an
alternative communication policy that lies between these two extremes: inter-
leave a reduced singleton consistency step on the agent’s subproblem with a
broadcast step of any value deletions that occurred, until no further changes oc-
cur in the domain. This strategy provides a more balanced trade off between the
number of messages and the agents’ idle time. Figure 1 presents the algorithm
executed by each agent participating in the society.

In Dis-SAC, termination can be either immediate, signaled by a stop mes-
sage, i.e. some agent detected a domain wipe-out and thus the problem is insolu-
ble (line 1 in Figure 1) or normal, signaled by an end message, i.e. all agents are
idle and have no more messages to process. Normal termination is detected by
the scheduler, that monitors message exchange in a passive manner. For every
broadcasted message in the society the scheduler receives a notification message
(figure 1 line 2) and thus is aware of the total number of messages broadcasted.
When an agent enters an idle state (a blocking receive operation as shown in
figure 1-line number 3), it informs the scheduler by issuing a waiting message,
stamped with the total number of messages it has handled (messages both sent
and received). Normal termination is inferred when the scheduler receives cor-
rectly stamped waiting messages from all agents in the society. A more detailed
description of the algorithm can be found in [7].
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DSACAgent(position,P)

begin
repeat

repeat
agrMsg ← {} ; noChanges ← true;
for Xi ∈ agentVars(position,P) do

domainChanges ← SACStep(Di,P);
1 if Di = {} then sendMsg(scheduler,stop); exit ;

if domainChanges 6= {} then
agrMsg ← agrMsg ∪ domainChanges ;
noChanges ← false;

if agrMsg 6= {} then
broadcast(agrMsg );

2 sendMsg(scheduler,netMsgSend); stamp ← stamp + 1;

until noChanges ;
termination ← collectMessages();

until termination ;

end

Function SACStep(Di, P)

for di ∈ Di do
if AC(P |Di={di}) is inconsistent then

Di ← Di \ {di}; removed ← removed ∪ (Xi, di);
propagateChanges( di);

return removed

Function collectMessages()

termination ← false; messages ← getMsgNonBlock ();
if messages = {} then

3 sendMsg(scheduler,waiting(stamp)); msg ← getMsg();
if msg = end or msg = stop then

termination ← true;

else
propagateChanges(msgBody() ); stamp ← stamp + 1;
termination ← false;

else
for msg ∈ messages do

propagateChanges(msgBody() ); stamp ← stamp + 1;

termination ← false;

return termination

Fig. 1: The balanced-DSAC Algorithm
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4 Implementation of the Dis-SAC Algorithm

The design of the Dis-SAC algorithm targets to an architecture of loosely cou-
pled distributed memory processors. Thus any number of machines connected
through a network is sufficient for implementing the algorithm, without the
need for exotic multi-processor hardware. On the other hand, the simplicity
of the algorithm allows any programming platform to be used as a vehicle for
its implementation, under the condition that it provides support for constraint
programming and network communication.

We have chosen for the implementation a CLP language that is targeted to-
ward distributed applications: the Communicating Sequential Prolog with Con-
straints platform (Cspcons). Cspcons [17] is an extension of the Communi-
cating Sequential Prolog II (Csp-ii) [18] and provides an excellent platform for
building any distributed CLP application, since it offers advanced communica-
tion facilities and constraint solving all under the logic programming framework.

A Cspcons application consists of several processes that run in parallel and
communicate through message passing over channels; the latter can also be es-
tablished over TCP/IP between processes residing on different hosts. Processes
are independent, i.e. each has its own Prolog execution environment and con-
straint store.

Each Dis-SAC agent is modeled as a Cspcons application and consists of two
processes: a process that executes the main code of the agent (as that is shown in
Figure 1) and a real-time process that responds to network events generated by
the Cspcons network mechanism, to respond to abnormal situations. In order
to communicate agents have to setup connections between them (initialization
phase), each of which is associated with two channels: an incoming channel for
the agent that is in the receiving end of the connection and an outgoing channel
for the one that is on the sending end. Thus, at the end of the initialization phase
all agents have two sets of channels, and can be used in the Cspcons predicates
send(Channels,Msg) and receive(Channels,Msg) to exchange messages.

The network Cspcons send/2 operation is asynchronous thus fits the re-
quirements of the algorithm. The receive/2 operation however is synchronous
i.e. it is a blocking receive, however providing an asynchronous receive operation
in Cspcons is trivial. It should be noted that both these predicates work on
lists of channels: for instance the send(Channels,Msg) predicate is in fact a
broadcast to the list of channels of its first argument.

Implementing the reduced arc consistency check is trivial in a CLP language:
the code shown below, shows a simple implementation that takes advantage of
the consistency algorithm employed by the language. Minor modifications could
return the list of deleted values from the variable domains.

rsac([]).

rsac([VAR|REST]):-domain(VAR,DOMAIN),try(VAR,DOMAIN),rsac(REST).

try(_,[]).

try(VAR,[Val|RDomain]):-not(VAR=Val),!, VAR #\= Val,try(VAR,RDomain).

try(VAR,[_Val|RDomain]):-try(VAR,RDomain).
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Thus the unparalleled simplicity of the Dis-SAC algorithm that lies both to
its simple communication requirements and the ease with which the singleton
consistency algorithm can be implemented in any CP system, allows it unprob-
lematic implementation on a variety of platforms. To further stress this fact, it
should be noted that the complete Prolog code of the Dis-SAC agent was no
more than 600 lines. The scheduler code is much shorter at about 300 lines.

5 Experimental Results

Although the initial experimental results reported in [7] demonstrate that the
Dis-SAC algorithm performs well on random binary constraint problems, further
investigation of the performance of the algorithm on structured problems was
required to prove the benefits of its application. Thus we have selected to test
the algorithm on two well known benchmarks: the Golomb rules and Quasigroup
Completion with Holes problem.

The experiments were conducted on a set of SUN workstations running So-
laris connected by a relatively low bandwidth (10Mbps) Ethernet network. Wall
time was measured in all experiments in order to provide a fair comparison with
the singleton consistency algorithm. The speedup obtained by running distrib-
uted version of the algorithm is computed as the faction of the execution time
of the sequential version over the distributed one.

Measuring the impact of the application of singleton arc consistency on find-
ing a complete solution to the selected problems is not the issue of the current
work. This has been thoroughly investigated in other research works such the
one found in [16]. Our aim was to prove that the Dis-SAC algorithm reduces the
execution time of the sequential SAC algorithm on enforce singleton consistency
on a problem instance, therefore all the experiments involve running the algo-
rithm as a preprocessing step. However it is obvious that employing Dis-SAC as
a step in a search process will yield similar benefits.

Golomb Rulers A Golomb ruler of m marks is a set of m integers x1, x2, ..., xm,
such that xi < xj , ∀i, j : 1 ≤ i < j ≤ m, x1 = 0 and the m(m − 1) differences
xj − xi, i, j : 1 ≤ i < j ≤ m are distinct. The length of such a ruler is the value
of the maximum integer of this set, i.e. xm. The problem consists of finding the
optimal Golomb ruler of m marks, i.e. the one with the minimum length. 1

The experiments include testing the Dis-SAC algorithm on Golomb ruler
problems ranging from 9 to 15 marks. The number of agents in the society
varies from 2 to 7. The speedup obtained is presented in figure 2.

As shown in the figure in almost all cases the distributed version reduces the
execution time of the sequential algorithm. The speedup obtained is linear to the
number of the agents involved, reaching a value around three when the number
of agents is seven. There are however three cases that require some attention: the

1 Golomb rulers are considered a most challenging CP benchmark and are included in
the CSPLib(http://4c.ucc.ie/ tw/csplib/) as prob006.
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Fig. 2: Speedup of the balanced-DSAC algorithm on Golomb Rulers

distributed algorithm for a community of two agents and for Golomb rulers of
10,12 and 14 marks performs slightly worse than the sequential one. A possible
reason behind this behavior is that the problem has such a structure that value
removals follow a “butterfly” pattern, i.e. an inconsistent value removed by agent
A triggers a value removal on agent B, which in turn is responsible for removing
a value in agent A, etc. Such situations can significantly degrade the performance
of the algorithm, since they impose a sequential order on the checks.

Quasigroup with Holes Problem A Latin square of size N is a table N ×N
filled with N elements such that each element appears once in each row and
column. Such a Latin square defines the multiplication table of the binary oper-
ation of a Quasigroup of order N . The Quasigroup Completion Problem (QCP)
or Latin Square Completion problem[19] consists of determining whether a par-
tial Latin square can be completed to a full one. The Quasigroup Completion
with Holes (QWH) problem [20] is a variation of QCP in which the initial partial
Latin square is obtained from a complete one by “punching” a number of holes
in it, i.e. a uniformly distributed removal of a fraction of the table entries. Thus
the main difference between the QCP and QWH is that the problem instances
of the latter are always satisfiable. Both problems have been widely used as CSP
benchmarks to evaluate the performance of a number of algorithms.

Using the QWH problem generator 2 described in [20] we have generated
problem instances for Latin squares of different sizes ranging from 30 to 40 and
different number of “holes” varying from 20% to 70% of the total table entries.
However from these large set of problems we have excluded those for which the
singleton consistency algorithm does not produce any value removals; it is ob-
vious that in these instances Dis-SAC has a linear speedup compared to the
sequential version. Figure 3 presents the average speedup for large problems in-

2 The authors would like to thank Dr. Carla Gomes (Dept of Informatics, Cornell
University) for providing the code for the QWH problem generator.
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Fig. 3: Speedup of the balanced-DSAC algorithm for the QWH problem

stances of the QWH problem, which is shown to be linear. Results for other
problem instances are not presented due to space limitations, but a similar be-
havior of the algorithm is observed.

6 Conclusions

The Dis-SAC algorithm enforces the same strong consistency as the SAC algo-
rithm but at a lower computational cost, as demonstrated by the experiments. Its
unparalleled simplicity allows easy implementation on any CP platform without
the need of changing the underlying consistency algorithm. Another strong point
of the Dis-SAC algorithm is the absence of any requirements for exotic shared
memory hardware: any network of machines is sufficient for its implementation.

Distributed singleton consistency defines a class of distributed filtering al-
gorithms in the same sense that the singleton consistency does: any local con-
sistency algorithm can be employed to detect inconsistent labels in the agents’
subproblems.

Although the currently obtained results indicate that the algorithm has a
good speed up and a good scale up in most problems tested, our aim is to test
the algorithm in a real-world application in order to complete the evaluation of
its performance. Our future plans also include further investigation of a number
of issues, as for example the impact of not having responsibility sets lexicograph-
ically assigned to agents, but instead use some information about the problem’s
structure to do the assignment.
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