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Abstract. The X-machine formal method forms the basis for a specifi-
cation/modeling language with a substantial potential value to software
engineers. An X-machine is a more expressive and flexible state machine,
capable of modeling both the dynamic and the static aspect of a system.
Communicating X-machines provide a methodology for building com-
municating systems out of existing stand-alone X-machines. However,
for practically using the model in an real-world system development
process, a tool for demonstrating and informally verifying the proper-
ties of the modeled system is required. An ideal platform for efficiently
implementing such a tool, should support, process oriented program-
ming, efficient communication primitives and declarativeness. Cspcons
is a distributed CLP platform that supports program execution over
multiple independent sequential CLP processes that synchronize though
message and event passing. The present paper demonstrates the applica-
bility of the Cspcons programming model to the implementation of a
communicating X-machine animator tool that will act as the basis for an
extended set of tools that will support the formal mathematical analysis
of the specified X-machine models.
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1 Introduction

The extensive use of computers in all aspects of every day life and industry and
the fact that the required control functions increasingly demand more complex
software, necessitate the need for research toward the improvement of the com-
puterised systems development process. The application of formal methods to the
development process of critical systems appears to be a promising solution [1].

One of the main problems in such a development process is ensuring correct-
ness of system specifications. This issue is of vital importance, since errors in
the specification have a significant impact to the project’s success. Due to the



size and complexity of systems under development, the requirements elicitation
process must be supported by a set of tools that will automatically animate
the formal model. The benefit is twofold. From the one side, developers can in-
formally verify that the model simulates the actual system under development.
From the other side, they can demonstrate the model to the users, aiding them
to identify any misconceptions regarding the user requirements.

X-Machines is a formal method possessing the computation power of Tur-
ing machines and, since they are more abstract, they are expressive enough to
be closer to the implementation of a system. This feature makes them particu-
larly useful for modeling and also facilitates the implementation of various tools,
making the development methodology built around X-machines more practi-
cal. Communicating X-machines is a set of X-machines that interact through
explicit message passing. In communicating X-machines the designer can sep-
arately specify the components and how these components communicate, thus
allowing a disciplined development of large and complex systems and also re-
use of X-machine models, since only the specification of their communication
component needs to be altered.

An ideal tool for animating communicating X-machines must necessarily sup-
port asynchronous execution of each X-machine and an accurate simulation of
the message passing mechanisms. Additionally, such a tool should be able to
animate X-machines by reading the corresponding models from a standard de-
scription language. Although the development of such a tool is possible in any of
the languages available today, its implementation would be significantly facili-
tated if the underlying platform supports process based programming, advanced
communication primitives and the necessary facilities to easily encode parsing of
the specification language for the animation of the actual model. In this paper
we argue that an appropriate platform for building such a tool is Cspcons [2].

Cspcons is a constraint logic programming language that follows the stan-
dard Prolog syntax and supports process oriented programming. Applications
in Cspcons are actually collections of independent sequential Prolog processes
that interact through messages and events. The language offers a plethora of fea-
tures such as synchronization through message passing, real time event driven
processes, communication over TCP/IP networks, etc. The rich program and
communication primitives together with the unparalleled suitability of logic pro-
gramming for constructing (any) language parser make the language an excellent
platform for building X-machine animator tools. This paper aims to present how
the notions of X-machines nicely fit to the programing model of Cspcons, by
presenting an implementation of the X-machine animator tool in Cspcons.

The rest of this paper is organized as follows. Section 2 reports other ap-
proaches to animator tools for formal methods. Section 3 is a brief introduction
to the X-machine formal method and its extension communicating X-machines.
Section 4 briefly presents the features of the Cspcons platform, necessary for
understanding the animator implementation. Section 5 describes in detail how
the current X-machine animator tool was modeled in Cspcons. Finally, section
6 concludes the paper and describes future directions of our current research.



2 Animating Formal Models

There is a plethora of tools that aim at increasing the productivity and accuracy
in all the phases of the formal development of systems, through model checking
or formal verification. These tools support a wide variety of methods such as
OBJ[3], VDM [4], Z [5], X-machines [6], etc.

Animating formal specifications has been identified as a valuable tool since
it allows for an initial evaluation of the system’s specifications, detects problems
through interactive model testing and requires no extensive expertise on the
method applied from the user’s side [7]. Of course the speed and ease of use
comes at the cost that animation is by no means a complete method: its ability
to detect errors depends on the set of tests that the user performs. Still, interest
in the area is significant in the recent years with a number of tools reported in
the literature. For instance, Possum [8] is an animator for the SUM specification
language. PiZA [9] is an animator for Z specifications based on a Z to Prolog
translation scheme. Pipedream [7] explores Z specifications by translating them
to a first order theory and then uses the logic/functional programing language
Mercury for animation. The B-Model animator [10] aims at animating model
based specifications following the B-method. The IFAD VDM++ tools [4] have
an animator (interpreter) that can be used to test specifications. ProBE [11] is
an animator tool for CSP processes, that allows to explore the events that lead
from a process state to another.

Finally, an initial version of an X-machine animator tool is presented in [6],
along with a number of other tools. However, this work involved the implemen-
tation of a sequential non process based version, where message passing and
X-machine execution relied on explicit execution cycles that imposed a synchro-
nization that could potentially lead to problems or even wrong conclusions when
modeling large complex systems. The work described in this paper, extends the
existing set of tools by presenting an implementation of an X-machine anima-
tor tool in Cspcons, in order to simulate more accurately the asynchronous
behavior of the components (X-machines) of the specified system.

3 X-machines

An X-machine is a general computational machine introduced by Eilenberg [12]
and extended by Holcombe [13]. X-machines employ a diagrammatic approach of
modeling the control by extending the expressive power of the FSM and model
non-trivial data structures as a typed memory tuple. Therefore, X-machines are
capable of modeling both the data and the control by integrating methods, which
describe each of these aspects in the most appropriate way.

X-machines apply to similar cases as Statecharts and other similar notations,
such as SDL, do. However, X-machines have other significant advantages. Firstly,
they provide a mathematical formalism for modeling a system and a model check-
ing method for X-machines is devised [14] that facilitates the verification of safety
properties of a model. Secondly, they offer a strategy to test the implementa-
tion against the model [13], which is a generalization of W-method for FSM



testing, proved to guarantee correctness if certain assumptions in the implemen-
tation hold [15]. Thus, X-machines not only provide a modeling formalism for a
system but can be used as a core notation around which an integrated formal
methodology of developing correct systems is built. In principle, X-machines
are considered a generalization of models written in similar formalisms, since
concepts devised and findings proved for X-machines form a solid theoretical
framework that can be adapted to other, more tool-oriented methods, such as
Statecharts or SDL.

Extremely useful in practice is the class of so called stream X-machines,
defined by the restrictions on the underlying data set, involving input symbols,
memory values and output symbols. In this paper with the term X-machine we
refer to the stream X-machine version. The formal definition of a deterministic
stream X-machine [13] is an 8-tuple, M = (Σ, Γ,Q, M, Φ, F, q0,m0) where:

– Σ, Γ is the input and output finite alphabet respectively,
– Q is the finite set of states,
– M is the (possibly) infinite set called memory,
– Φ is the type of the machine M, a finite set of partial functions φ that

map an input and a memory state to an output and a new memory state,
φ : Σ ×M → Γ ×M

– F is the next state partial function that given a state and a function from
the type Φ, denotes the next state. F is often described as a transition state
diagram. F : Q× Φ → Q

– q0 and m0 are the initial state and memory respectively.

Starting from the initial state q0 with the initial memory m0, an input symbol
σ ∈ Σ triggers a function φ ∈ Φ which in turn causes a transition to a new state
q ∈ Q and a new memory state m ∈ M . The sequence of transitions caused by the
stream of input symbols is called a computation. The computation halts when
all input symbols are consumed. The result of a computation is the sequence of
outputs produced by the sequence of transitions.

A Communicating X-machine model consists of several X-machines, which
are able to exchange messages. The approach used in this paper is analytically
presented in [16] and preserves to a great extend the standard theory described
earlier. This version of communicating X-machines views the communicating
system as a result of a sequence of operations that gradually transform a set
of X-machines to a system model, leading towards a methodology of developing
large-scale communicating systems. Since the communicating X-machine model
is viewed as the composition of X-machine type (X-machine type is defined as an
X-machine without an initial state and initial memory) with the initial memory
and an initial state as well as with a set of input/output streams and associations
of these streams to functions, the development of a model can be mapped into
three distinct actions: (a) develop X-machine type models independently of the
target system, or use existing models as they are, as components, (b) create
X-machine instances of those types and (c) determine the way in which the
independent instance models communicate, forming the X-machine component



(XMC). Finally, the communicating X-machine CXM is defined as a tuple of
n XMC as CXM = (XMC1,XMC2, ...,XMCn).

In this approach X-machines have their own standard input stream but when
they are used as components of a large-scale system more streams may be added
whenever it is necessary. The number of streams associated with one XMC
depends on the number of other XMCs, from which it receives messages (Fig. 1).
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Fig. 1. Three communicating X-machine components XMC1, XMC2, and XMC3 and
the resulting communicating system where XMC2 communicates with XMC1 and
XMC3, while XMC3 communicates with XMC1.

In addition, for a formal method to be practical, it needs certain tools that
will facilitate modeling. A prerequisite for those tools is to use a standard nota-
tion to describe models in that formal language, other than any ad-hoc math-
ematical notation. The formal definitions of the X-machines can be presented
using the notation of X-machine Description Language which is intended to be an
ASCII-based interchange language between X-machine tools [6]. Briefly, XMDL
is a non-positional notation based on tags, used for the declaration of X-machine
parts, e.g. types, set of states, memory, input and output symbols, functions etc.

XMDL has been enriched with syntax that provide the ability to define in-
stances of X-machine types. Finally, XMDL provides syntax to express the solid
circle and the solid diamond that are attached to the functions of the commu-
nicating machine and denote input and output streams respectively.

4 Cspcons: A Communicating Sequential LP Platform

Cspcons [2] is a programming language, targeted towards distributed (con-
straint) logic programming applications. It is an extension of the Communicat-
ing Sequential Prolog II (Csp-ii) language [17] and inherits all its advanced
communication features and at the same time supports constraint programming.
The latter follows the tradition of classic CLP languages [18].



The main feature of both Csp-ii and Cspcons systems is support for the
communicating sequential process [19] programming methodology in a Prolog
environment. Thus, a Cspcons application consists of a set of user defined,
independent Prolog processes, each with its own execution environment, dy-
namic database and constraint store, that run in parallel. Processes can influence
each other only by the available communication methods i.e. message passing
and event generation. Fair execution on a single processor host is ensured by a
time-sharing scheduler.

Processes are defined as the execution flow of a Prolog goal and can be
self-driven (normal) processes or event-driven (real time). A self driven process
is characterized by its (Prolog) goal; upon its creation the process initiates
the execution of this goal. Such a process “lives” in the system until its goal
terminates. Thus, self driven processes can be considered as simple Prolog
threads executing a goal and are the simplest kind of the two type of processes
offered. That is why they are usually referred as normal processes.

On the other hand, real time processes are more complicated and their exe-
cution is considerably different than that of a simple Prolog thread. The main
feature of real time processes is that their execution is driven by events that
are generated in the application, i.e. after their initialization they switch to a
cyclic behavior, controlled by incoming events. For every real time process, the
incoming events are gathered in a separate first-in-first-out input queue, local to
each process, from which they are consumed by initiation of their private event
handling (Prolog) goal.

Inter-process communication is achieved by synchronous message passing or
by event generation. Messages can be only passed through one way communica-
tion channels and can be any Prolog term except a single unbound variable.
Channels act as system-wide available resources, identified by unique names and
may appear and disappear dynamically during the program’s lifetime.

Events serve for triggering real time processes and are also identified by
system-wide unique names. They can be generated explicitly by built-in pred-
icates (generate event/2) or implicitly by the internal clock of the scheduler.
The latter allows to invoke execution of the real-time process in specific time
intervals. Every event occurrence can have an optional data argument (an arbi-
trary Prolog term) that can be used to provide additional information.

The process-based model of Cspcons in conjunction with the declarative
style of both the logic and constraint programming paradigms supported, allows
the elegant implementation of any parallel or distributed application.

5 Animating X-Machines in Cspcons

The ideal animator tool should support the asynchronous execution of the X-
machines, simulate efficiently their communication model and of course animate
models defined in the XMDL specification language. Thus there are three main
requirements for the implementation of the tool:

– Ensuring asynchronous execution.



– Preservation of the semantics of the X-machine communication.
– Automatic generation of the code for animation from XMDL specifications.

We argue that the process based programming and communication facil-
ities of Cspcons provide an excellent platform for building such a tool. X-
machines participating in the model can be implemented as independent Csp-
cons processes, ensuring asynchronous execution. Communication between them
can be efficiently implemented using the facilities offered by the language. Fi-
nally, through the use of Prolog DCG grammar tools, the XMDL language
can be efficiently parsed to create the corresponding runnable code.

Thus, in the current implementation each X-machine is modeled as an inde-
pendent real-time Cspcons process, called henceforth X-process. The separation
of dynamic databases of Prolog processes greatly facilitates the implementa-
tion of the animator tool, since state information and the memory status of
each X-machine are stored locally in each X-process. Message passing between
X-processes is based on event generation, as is described in section 5.1.

Finally, a compiler automatically translates the XMDL specification to Csp-
cons code, ready for execution by the animator. The translator uses DCG gram-
mars for efficiently parsing the XMDL specification and is heavily based on the
XMDL to Prolog compiler reported in [6]. The overall system architecture is
depicted in figure 2.

X-machine 
Model

XMDL Model Compiler

CSPCONS Code

Rules for Transformation

Semantic Analysis 

Animation Algorithm

Library Built-in Operations

Animator Results

Fig. 2. X-machine Animator Architecture

5.1 X-Process Communication

The receive operation in X-machines is synchronous, i.e. each X-process should
perform a blocking receive until a message arrives in the queue. This blocking re-
ceive operation is also selective: successful reception of the message does not only
depend on the message format and the message queue on which it arrived, but
also on a guard test performed by the corresponding function of the X-machine



in the current state. Otherwise the message should be retained in the incoming
queue, since it might be consumed at a later computation state of the X-machine.
The send operation on the other hand is asynchronous: X-machine communicate
a message and continue their execution without waiting for the corresponding
receive operation to occur. Although, such a communication model can be im-
plemented in Cspcons by message passing over channels, as demonstrated in
similar cases [20], the resulting implementation is somewhat complex, since it
would require the definition of two Cspcons processes for each X-Machine.

Thus, in the X-Machine animator tool, message communication relies on an
event generation scheme. Message passing involves the sender X-process generat-
ing an appropriate event that is handled by the receiver X-process (Fig. 3). Each
such event, named com-event henceforth, carries a data argument that represents
the message broadcast, annotated by the name of the sender X-process. Since
com-events can be generated anywhere in the Cspcons application and are only
handled by the specified real time process, the sender only needs to be aware of
the name of the receiver X-process’ com-event. To simplify the communication
scheme even more and avoid any necessary directory facilities etc., the name of
the com-event is identical to the name of the X-process, thus each sender only
needs to know the name of the receiver to broadcast the message.
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Fig. 3. X-machine Processes and Communication

Annotating each message with the name of the sender process allows the
simulation of multiple input messages streams. All incoming events carrying
messages are stored in a first-in-first-out manner in the real-time process queue
and are consumed by the event handling goal of the X-process (Fig 3). Failure to
consume a message on the specific computation state of the X-process is followed
by a storage operation of the message to the dynamic memory of the process,
from which they can be later consumed. This schema results to no message loss
as well as preservation of the order that the messages arrive in the X-machine
queues.



5.2 X-machine Processes

Simple communication was not the only motivation behind modeling X-machines
as real-time Cspcons processes. The cyclic behaviour of this type of process
maps naturally to the execution model of each communicating X-machine, since
the latter remains idle, i.e. in the same computation state, as long as an appro-
priate message (i.e. com-event) arrives.

Thus, X-processes are driven by their com-events. Initially, each X-process
initializes its memory and computation state according to the specification and
resume a cyclic behaviour to handle the incoming com-events. Upon the recep-
tion of a com-event the X-process checks the applicability of any functions in its
current computation state. If there are no applicable functions, then the com-
event is removed by the process queue and stored in the dynamic memory of
the Cspcons process (Fig. 3). If there are applicable functions in the current
computation state, then one of these functions is executed and a transition of
the machine to a state occurs. After the successful completion of the transition
the X-process checks the applicability of past unconsumed messages in the new
computation state and applies any functions to trigger any other transitions.

The Prolog code that implements this cyclic behaviour is presented in
Fig. 4. The build-in predicates get event/2 collect the next event in the event
queue but remove it from the queue only upon successful completion of the
animatecommx/1 predicate. The next x state/3 predicate checks the applica-
bility of a function in the current computation state given the new message that
arrived and succeeds if a transition occurs in the current state, or fails other-
wise. Finally, the checked arrived message/1 predicate performs any transi-
tions triggered by previously arrived messages.

%%% Applicable function check and state transition.

%%% Upon a transition, the predicate checks for past messages.

animatecommx(Model):-

get_event(Model,Input-Stream),

current_computation_state(Model,State,Memory),

next_x_state(Model,[State,Memory],Input-Stream),

check_arrived_messages(Model).

%%% A not consumed message is stored in Prolog memory.

animatecommx(Model):-

get_event(Model,Input-Stream),

assertz(input_stream_unconsumed(Input-Stream)).

Fig. 4. Cspcons Prolog Code Implementing the X-Process

The environment is also modeled as a real-time process, generating appro-
priate com-events for the X-processes participating in the model under investi-
gation. Currently, environment com-events can be either given by the user or



generated by Prolog code. For the latter however the user has to implement
the code manually. We are currently working on the definition of a modeling
language for environment behaviour specification scenarios and generation the
corresponding code automatically.

6 Conclusions

The communicating X-machines can be used as a core formal notation for the de-
scription of complex large systems, around which an integrated formal method-
ology of developing correct systems is built, ranging from model checking to
testing [14]. The animator implemented provides an initial tool that facilitates
informal verification of the proposed model of the system under development for
user desired properties and enhances the communication between the users and
the development team. It also forms the initial basis on which several tools could
be built providing more functionality like formal verification (e.g. model check-
ing) of system properties (e.g. safety, liveness, deadlock freedom), production of
a complete test set etc.

The preliminary implementation of X-Machines in Cspcons, shows that the
programming facilities of the platform map very well to the requirements of the
animator tool. The notion of independent Prolog processes allows asynchro-
nous execution of the X-machine components of the model under investigation
and the communication primitives of the language allow to efficiently implement
message passing between these. Additionally DCG grammars allow to arrive in
a simple manner from XMDL specifications to executable code.

As stated one of the first extensions in the current tool involves a specification
language to describe environment scenarios that will allow the user to automate
completely the animation process. Towards this direction real time features of
Cspcons provide an excellent tool to build time based environment interaction
with the communicating X-machine model.

Furthermore, we are currently investigating a new communicating X-machines
model in which memory locations will be constraint domain variables with re-
lations underlying the possible values assigned. Given that Cspcons supports
constraint programming, the tools for this new model will be directly imple-
mented as an extension of the current tool.
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