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Abstract 

Social insect colonies present an interesting problem for formal modelling due to their 
outstanding characteristics, such as self-organisation and emergence. In this paper, we 
experiment with two different formal methods, Communicating X-machines and Population P 
Systems, which can be used separately to model biologically inspired. systems. The case of 
Pharaoh’s ants is used as a vehicle of study. We discuss the advantages of each method and 
we present a framework that leads to a rapid implementation and simulation of such multi-
agent systems.  

1 Introduction 
Study of social insects’ colonies, such as ants and bees, reveal the need for 
computational models, which are able to handle the highly dynamic structure of any 
biological or artificial system that exhibits emergent behaviour. Such computational 
models would facilitate understanding of self-organisation phenomena that appear in 
those colonies. Part of bio-informatics technology aims at developing in-silico models 
and simulations that will complement in-vitro and in-vivo biological experiments. On 
the other hand, knowledge gained from observation in these experiments could be 
used to develop artificial multi-agent systems in which simple components with 
simple interactions will achieve a complex overall behaviour.  

A social insect colony is an example of a multi-agent system where the capabilities of 
the entire colony are much greater than that of any individual. Members of a colony 
have a distinct role that determines what behaviour they must demonstrate. For 
example, in ant colonies we may find foraging ants, workers, queens etc. The 
behaviours of the social insects are directed towards the benefit of the colony as a 
whole and this is done through self-organisation. This is achieved through local 
interactions with other insects and the environment, since no insect has a global view 
of the environment. The major challenge for social insect research is the integration 
of individual behaviours, thereby understanding the emergent colony-level behaviour. 



Even page header 2 

Various aspects of ant colonies have been modelled using different approaches in 
order to explain some behavioural characteristics or to ease simulating different 
conditions that might restrict or influence their behaviour. In this paper we present 
and compare two models by applying them to a case study involving the simulation of 
the behaviour of an ant colony, Pharaoh’s ants in particular, inside their hive. 

Monomorium pharaonis, also called the Pharaoh’s ants, is a species of ants that 
originated from North Africa. A typical colony comprises of 100 to 5000 ants and 
contains a queen, a number of workers, pupae and some brood. A number of about 
100 to 200 ants is adequate to study their behaviour in-vitro. Inside the nest, the ants 
are inactive for most of their time. An ant becomes active if it becomes hungry or if it 
is being recruited by another ant.  

The assumptions that are made for this study are: (a) the colony is situated in a 
rectangular environment and only consists of workers, (b) the ants are either inactive 
or move around looking for food, (c) when two ants meet they might share food, if 
one is hungry and the other has food supplies, and (d) the ants go out to forage when 
they are hungry, no food source is identified and a pheromone trail leading to an exit 
of the nest is discovered.  

Although fairly simple the above is a realistic case study and of interest since it shows 
a combination of independent ant behaviours as well as synchronised behaviour, in 
the case that two ants come across to exchange food. It also has an important degree 
of repetitiveness using the same type of ant in a number of instances but also with 
slight variations between them (through the food distribution across the colony, 
different ant positions in the environment, different individuals hunger thresholds 
etc.). Finally, it exhibits aspects of self-organisation of the ant colony. 

From a modelling perspective, there are several interesting properties of the system 
that are challenging. The individual behaviour of the ants must be modelled enabling 
them to perceive their environment. The ant population is not static (new ants enter 
the nest, some leave, others die of hunger etc.) but neither is their communication 
network (pairs of ants communicate under particular conditions). Overall, the 
configuration of the colony is highly dynamic and constantly changes over time. 

In the next section, we show how two different formal methods can be employed for 
modelling social insect behaviour and we investigate their suitability for modelling 
the behaviour of Pharaoh’s ants. In Section 3, we discuss the steps towards a rapid 
simulation of the formally modelled behaviour using the NetLogo platform. Finally, 
in Section 4 we discuss our findings from experimenting with the two formal methods 
and the simulation and Section 5 concludes this paper. 
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2 Formal Modelling  
Formal methods are based on rigorous mathematical notations, which aim at 
describing systems in the early stages of software development. Such formal 
descriptions are useful for precisely specifying a system’s data and/or control and, as 
a consequence, for verifying whether certain properties are true (through formal 
verification or model checking) as well as to test whether the final product meets the 
initial description (through complete formal testing). All of these stages are crucial in 
the development process and researchers involved with formal methods claim that 
“correct” software can only be achieved through the use of formal methods.  

A variety of formal methods exist, each one holding prominent characteristics that 
make it suitable for modelling different classes of problems. In our case, we are going 
to use two different formal methods, namely Communicating X-machines (CXM) and 
Population P Systems with active cells (PPS), which are found to hold characteristics 
that are well suited to the problem in question. In the following, we do not extensively 
present and discuss formal definitions, which can be found elsewhere. Instead, we 
focus on the modelling strengths of each method, presenting them in a rather informal 
way, and elaborate with mathematical notation and its meaning where appropriate. 

2.1 Communicating X-machines 
X-machines (XM) were firstly introduced by Eilenberg [1974] based on the idea that 
a finite state machine is extended with a structure that represents its memory, while a 
stream of inputs trigger the appropriate functions that annotate the transitions between 
its states. The method greatly facilitates the software engineering process of 
specifying or modelling reactive systems [Holcombe, 1998]. XM models can be 
specified in any mathematical notation but also in an appropriately defined notation 
called XMDL (X-machine Description Language) [Kefalas et al, 2003b]. The latter 
initiated the development of various tools, which aid the modelling process as well as 
the animation, testing and model checking of XM models. Communicating X-
machines are an extension of the XM method, which deals with the development of 
large scale systems that consist of several interacting components, each of which is 
described as an XM [Kefalas et al, 2003a].  

For the problem at hand, one initially has to create a model for an ant, starting by 
identifying the number of states. There are five states which the ant can be in: (a) 
inactive, a non-hungry ant holding food, (b) hungry, an ant holding a food quantity 
that is below its hunger threshold, (c) giving, a non-hungry ant that perceives a 
hungry one and shares its food, (d) taking, a hungry ant that perceives an inactive ant 
and receives food from it, and (e) dead, for an ant whose food quantity has dropped to 
zero. Formally we write Q = {inactive, hungry, giving, taking, dead}. 
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The memory of the ant holds (a) its current position, (b) the amount of food, it carries, 
(c) a number denoting the food quantity threshold, below which the ant becomes 
hungry, (d) the food decay rate, a number denoting the quantity of food that is 
consumed by the ant in each time unit, and (e) the food portion, i.e. the food amount 
to be given by an ant that is carrying food to another which is hungry. We choose to 
represent all of them as natural numbers. 

The ant is modelled so that it accepts a tuple (pos, stimuli) as input to its functions. 
The first element of the input represents the coordinates in which stimuli are 
perceived, whereas the second element is the description of the stimuli. The latter can 
be pheromone or space, describing an empty position with or without pheromone, a 
hungry, ha, or a non-hungry, nha, ant, or, finally, a number greater than zero 
representing the food quantity that is received by a non-hungry ant that shares its 
food. Formally, Σ: (N×N) × ({ha, nha, pheromone, space}∪N). 

The transitions between states of the XM, indicated by the diagram in Fig. 1, are the 
functions: 
Φ = {search, follow_trail, become_hungry, ignore_hungry_ant, die, do_nothing, 

meet_non_hungry_ant, meet_hungry_ant, no_food_to_give, become_hungry, 
take_enough_food, give_food, take_not_enough_food}  

 

INACTIVE 

HUNGRY 

GIVING 

TAKING 

DEAD 

do_nothing 

no_food_to_give 

become_hungry 

meet_hungry_ant 

search follow_trail 

ignore_hungry_ant 

die 

meet_non_hungry_ant 

take_enough_food 

give_food 

take_not_enough_food 

M=(position, food, food_threshold, food_decay_rate, food_portion) 

ANT 

 
Figure 1. The state transition diagram of the ant 

Functions are triggered by an input and the contents of the memory, and they produce 
an output while updating the memory. For example, when in the inactive state an ant 
may (a) perceive a hungry ant and if the food quantity the former is carrying is 
enough, this will bring it to the giving state whereas if it does not have enough food to 
give, it will ignore the hungry ant and remain in the inactive state; (b) become hungry, 
if the amount of food it carries drops below its hunger threshold, or (c) do nothing; in 
the presence of no other stimuli the inactive ant will just consume an amount of food 
equal to the decay rate. The only thing that an ant in the giving state can do is to 
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actually give the food to the hungry ant that has been just perceived. In formal 
notation: 

become_hungry ((pos, in),(myPos, food, fThreshold, fDecay, fPortion)) = 
((got_hungry), (myPos,newFood, fThreshold, fDecay, fPortion)) 
if newFood ≤ fThreshold 
where newFood ← food-fDecay 

XMs can communicate by directing the output of one XM function as input to 
another. Figure 2 shows an instance of two ants communicating while sharing food. 
 

GIVING 

give_food 

 
ANTi 

TAKING 
take_enough_food 

take_not_enough_food 
 

ANTj 

ANTj 

ANTi 

ANTi 

M=((10,8), 70, 30, 10, 20) M=((10,9), 10, 20, 5,10) 

((10,8),20) 

message 

An inactive ant with enough food A hungry ant  

 

Figure 2. Two ants communicating while sharing food. The inactive ant’s function 
give_food sends as output ( ♦ symbol) the food amount it is willing to share to be 
received as input (● symbol) by the take_enough_food function of the hungry ant. 

As mentioned earlier, one can verify models expressed as XMs against the 
requirements, since one can prove whether certain properties, implicitly defined over 
the memory, are true [Eleftherakis, 2003]. Additionally, in the case that the model is 
used as a design for a possible implementation, a test set that is guaranteed to 
determine its correctness may be produced, under certain well-defined conditions 
[Holcombe & Ipate, 1998].  

2.2 Population P Systems with active cells 
Membrane computing represents a new and rapidly growing research area, which is 
part of the natural computing paradigm [Paun, 2002; Paun et al., 2002; Martin-Vide et 
al., 2004] and has been introduced with the aim of defining a computing device, 
called a P System, which abstracts from the structure and the functioning of living 
cells [Paun, 2000]. The membrane structure of a cell is the hierarchical arrangement 
of all membranes embedded in the skin membrane that identifies distinct regions 
inside the P System. In the same way that each cell compartment contains its own 
enzymes and molecules that participate in chemical reactions, each P System region 
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gets assigned a finite multiset of objects and a finite set of rules, either modifying the 
objects or moving them between regions. 

A natural generalisation of the P System model can be obtained by considering P 
Systems whose structure is defined as an arbitrary graph, called a Population P 
System with active cells. Each node (cell) in the graph represents a membrane, which 
gets assigned a multiset of objects and a set of rules for modifying these objects 
(transformation rules), communicating the objects alongside the edges of the graph 
(communication rules), generating new cells (division rules) and destroying cells (cell 
death rules) [Paun, 2002]. The graph’s edges, which denote communication channels, 
can change over time by applying bond-making rules, under certain conditions.  

Our main interest lies in the ability of a PPS to reconfigure its own structure through 
the division, death and bond-making rules. These are rules that capture the ways in 
which the colony evolves through the appearance and removal of agents or 
communication links. For example, when two ants are close to each other and one of 
them is hungry and the other is inactive, a rule must create a communication link. 
This is shown by the following bond-making rule: 
([taking, pos1], ant; ant,[giving, pos2]) 

if neighbours(pos1, pos2) 

The following cell death rule removes an ant from the system, when it cannot find 
food and its food quantity drops to zero: 
(food → †)ant, if food≤0 

3 Simulation 
Apart from verifying the proposed model using formal methods, the presence of a 
large number of XMs interacting based on spatial information dictated the need for a 
simulation application that would animate the execution of the proposed model. Such 
an animator would allow us to visualize the system’s operation as well as collect 
statistical data concerning the colony’s behaviour in the hive. Implementing such an 
animator requires a tool that supports simulation of a large number of autonomous 
entities, the Pharaoh’s ants in our case and facilitates the creation of a graphical 
representation of the environment and the collection of experimental data. One of the 
best representatives of such tools is NetLogo. 

NetLogo [Wilensky, 1999] is a modeling environment targeted for simulation of 
multi-agent systems that consist of a great number of agents. NetLogo offers a simple 
functional language, in which behaviours of agents can be encoded, and a 
programming environment that allows the easy creation of a GUI for a simulation 
supporting a great number of parameters. The environment is an excellent tool for 
rapid prototyping, initial testing of multi-agent systems and animation of the 
modelled system. 
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There are two types of agents in NetLogo: patches that are static agents, i.e. 
components of a grid on which turtles, i.e. agents able to move, “live” and interact. 
The former allow the modelling of environmental properties in a simulation, such as 
the existence of pheromone in a specific hive position. The latter can be used to 
model fully capable agents such as the ants. The programming language allows the 
specification of the behaviour of each patch and turtle, and of the control of the 
execution. Moreover each turtle can have its own set of variables and this greatly 
facilitated the implementation of the hive’s simulation, since each ant (turtle) in the 
simulation maintained its own X-machine memory structure and information about its 
state. Monitoring and execution of the agents is controlled by an entity called 
observer that “asks” each agent to perform a specific computational task. 

As stated, the motivation behind building the NetLogo simulation was to test the 
proposed X-machine model for the Pharaoh’s ants and at the same time perform a 
number of experiments to investigate the colony’s behaviour in a hive that contains a 
large number of ants. Thus, instead of building a completely ad-hoc model of the ants, 
based on a subjective interpretation of the functions and transitions described in the 
XMDL model, we have chosen to implement an X-machine meta-interpreter that will 
animate the specified XM model from a NetLogo representation of the XMDL 
specification. So that the above is better illustrated, consider the following X-machine 
function (defined in the X-machine Description Language): 
#fun become_hungry ((?p, ?in), (?pos, ?f, ?ft, ?fdr, ?fp)) =  
  if ?nf =< ?ft then 
  ((got_hungry), (?pos, ?nf, ?ft, ?fdr, ?fp)) 
  where ?nf <- ?f - ?fdr. 
 

In our simulation the above is translated into the following NetLogo function:  
to-report become_hungry [px? py? in?] 
  let nf? f? - fdr? 
  ifelse nf? <= ft?  
   [report(list true "got_hungry" (list xcor ycor nf? ft? fdr? fp?))] 
   [report(list false)] 
end  
 

The functions are executed by the meta-interpreter which continuously executes the 
following loop:  
1. Execute Applicable Dynamic Reconfiguration Rules 
2. Ask each ant to: 
   2.a Determine its input based on status of its neighbouring  
       positions. 
   2.b Determine the applicable function based on input and state of 
       the ant. 
   2.c Apply changes to its memory and state specified by the 
       selected function of step 2.b.  
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Implementation of the dynamic reconfiguration meta-rules is rather straightforward in 
NetLogo, given that the observer “controls” the execution of agents and has access to 
all their internal variables, i.e. a complete view of the state of computation. 

 

Figure 3. A screen-shot of the simulator environment in NetLogo.  

Finally, the simulator includes a graphical interface through which experiment 
parameters can be set and values describing the state of the modelled hive can be 
monitored. Figure 3 shows a screen-shot of the implemented application. The 
animation of the hive is displayed on the window on the right side of the screen-shot, 
where the lines represent pheromone paths. On the left hand side we can use the 
controls to set values for various parameters affecting the course of the simulation. 
Indicatively, some of the parameters we have used are the pheromone evaporation 
rate, the probability of an outside ant carrying food to enter the nest, the probability of 
an ant to choose a particular pheromone trail, the number of entrances and initial trails 
etc. An extensive experimentation with the values of the above parameters will be 
able to provide valuable feedback on the ways they affect the life of the colony. 
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4. Discussion 
In the process of modelling the behaviour of the Pharaoh’s ants we have identified a 
number of issues on which an empirical comparison between the two methods is 
based. 

There are advantages to both methods, though at different modelling levels. X-
machines appear to be a natural metaphor for the modelling of the internal behaviour 
of ants because they can naturally describe their internal states and the transitions 
between these states caused by stimuli as well as represent the data structures which 
form the knowledge of an ant. However a Communicating X-machine model cannot 
by itself manage the required reconfiguration (in number of participating entities or 
communication channels), which is a prominent property of the system in question.  

Population P Systems, on the other hand, possess a natural trait for capturing the self-
assembly behaviour of the colony of ants and how the structure of the colony may 
change over time. However, when it comes to the modelling of an individual, PPS are 
less intuitive in representing their internal states and behaviour. 

Consequently, it is clear that there is a valid rationale behind a possible combination 
of the two methods that uses a Communicating X-machine System to model the static 
structure of ants, their internal data and change of internal state and a Population P 
System with active cells to model the dynamic configuration of a colony by applying 
the reconfiguration operators on the Communicating X-machine System.  

In terms of animation, we considered the case of NetLogo as a suitable platform to 
run certain experiments. The NetLogo implementation was carried out in a rather 
straightforward way, bearing in mind the formal XM models of the individual ants 
and the Population P System reconfiguration rules. The formal models have driven 
the creation of the simulation, by mapping the functions of X-machines and the re-
write rules of P Systems to NetLogo functions. The implementation facilitated better 
understanding of the models and helped us correct some ambiguities that existed in 
the original models. The NetLogo implementation revealed a framework under which 
similar animations could be achieved in other domains of biology-inspired multi-
agent systems. Work concerning the NetLogo animator involves automatic translation 
of XMDL specifications in NetLogo code. Some steps have already been taken 
towards this direction [Peneva & Kefalas, 2005]. Given the current structure of the X-
machine meta-interpreter and the existing automatic XMDL to Prolog translation 
tools, this task is considered to be more than feasible. 

5 Conclusions and Further Work 
In this paper we use two different methods, namely Communicating X-machines and 
Population P Systems, in order to formally model Pharaoh’s ant colonies. We have 
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discussed the rationale and characteristics of each method and made a brief 
comparison between them in order to allow further development and improvement. A 
simulation of the ant colony based in NetLogo was also presented. NetLogo was 
suggested as a suitable tool for the development of prototype simulations and in-silico 
experimentation due to the friendly environment and tools it provides. The easiness in 
which experiments could be parameterised gave us the chance to make preliminary 
observations on fundamental issues of self-organisation and emergence that could be 
used to complement in-vitro experiments. Currently, we are investigating an 
integration of the two formal methods into a new one that will possess the prominent 
advantages of both. This attempt towards a kind of hybridisation of the two 
paradigms [Stamatopoulou et al, 2005b] gives rise to various issues which require 
further investigation, however we are confident that this new method can help us to 
model either other biologically-inspired artificial systems, such as autonomous nano-
robotic swarms, or other complex systems, such as emergent complex web-services 
resulting from composition or aggregation of simpler ones. 
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