

A Systematic and Complete Algorithm to Compute

Higher Order Exclusion Relations

Ioannis Refanidis and Ilias Sekallariou

University of Macedonia, Dept. of Applied Informatics

Egnatia str. 156, 54006, Thessaloniki, Greece

yrefanid@uom.gr, iliass@uom.gr

Abstract

Planning graphs and binary mutual exclusion (mutex)
relations presented a major breakthrough in automated
planning technology. They have been exploited in three
ways, i.e. extracting optimal parallel plans through search in
the space of planning subgraphs; extracting informative
heuristics to guide search either in state- or in plan-space;
and converting the planning problem into an equivalent
satisfiability one. This paper advances the area of planning
graphs a step further, by providing for the first time a
systematic and complete algorithm to compute exclusion
relations (or nands as we call them) without a bound on
their order. Computing all exclusion relations among the
propositions of a planning problem is equivalent to
enforcing strong k-consistency, with k being the number of
propositions, i.e., global consistency. The expected
consequence is that, if global consistency has been
achieved, plans can be extracted in a backtracking free
manner. This is proved in the paper for the proposed
algorithm and demonstrated experimentally over various
small problems from several planning domains. The obvious
limitation is that it is practically impossible to compute all
higher order exclusion relations for all problems but the
smaller ones. So, our work is mainly of theoretical
importance; its potential practical importance lies in serving
as a starting point for obtaining unexplored relaxations, i.e.,
new families of heuristics, to be exploited by a graph or
state-space based search procedure.

Introduction

Planning graphs were introduced more than a decade ago
(Blum and Furst, 1997) and have significantly advanced
automated planning technology, by making possible to
solve large problem instances without domain specific
heuristics, for the first time. At the time of their
introduction, they were the dominant technology, as
demonstrated by the systems participating in the first
international planning competition

1
: three of them, IPP

(Koehler et. al, 1997), SGP (Corin et. al. 1998) and STAN

1
 ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html

Copyright © 2009, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

(Long and Fox, 1999) were variations of the basic
Graphplan algorithm, Blackbox (Kautz and Selman, 1998)
was using a planning graph to transform the planning
problem into an equivalent satisfiability one, and only one,
HSP (Bonet et. al. 1997), was not using planning graphs
and exclusion relations.
 Even though, in the years that followed, domain
independent heuristic state-space planners took the lead in
the planning technology, they exploited planning graphs
and mutual exclusion relations to extract more informative
heuristics and recognize non-achievable propositions. FF
(Hoffmann and Nebel, 2001) is a representative case, since
its success was mostly based on applying the basic
Graphplan algorithm in a relaxed version of the planning
problem with no delete effects (and, thus, no mutexes at
all. Planning graphs have also been used to compute
heuristics for plan-space planners (Nguyen and
Kambhampati, 2001), whereas extensions for temporal and
conformant domains have been devised (Weld and Smith,
1998; Smith and Weld 1999).
 Both Graphplan and all of its variations are based on the
computation of binary exclusion relations. Computing
higher order exclusion relations has been considered
inefficient, since the extra computational cost is not
generally compensated by a faster plan extraction search
phase. Although, some approaches to compute higher order
relations, usually referred as invariants, have been
introduced (presented at the Related Work section), to the
best of our knowledge no systematic and complete method
has been proposed till now and, consequently, no empirical
evidence has been presented to support this claim.
 This paper presents a systematic and complete method to
compute higher order exclusion relations, or nands as we
call them, in a propositional setting. The proposed method
can be used to compute all exclusion relations of any order,
without setting an upper bound on it. It is based on the well
known monotonicity property of the exclusion relations
(Long and Fox, 1999) and succeeds in minimizing the
number of alternative sets of action combinations that need
to be taken into account at each level of the planning
graph. Computing all exclusion relations among the
propositions of a planning problem is equivalent to
enforcing strong k- consistency, with k being the number of

33

mailto:yrefanid@uom.gr
mailto:iliass@uom.gr
ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html

propositions, i.e., global consistency (Freuder, 1978). The
expected consequence is that, if global consistency has
been achieved, plans can be extracted in a backtracking
free manner. This is proved in the paper for the proposed
algorithm, and is also demonstrated using an
implementation in Prolog.
 The obvious limitation of the proposed algorithm, also
well known attribute of any k-consistency enforcing
algorithm for large values of k, is that it is practically
impossible to compute all higher order exclusion relations
for any problem but the smaller ones. So, our work is
mainly of theoretical importance; we do not intend to
outperform state-of-the-art planning systems in terms of
time needed to solve problems. However, having such a
systematic and complete algorithm to compute higher
order exclusion relations might serve as a starting point for
obtaining unexplored relaxations, i.e. new heuristics, to be
exploited for plan extraction using search either in a
graphplan setting or in a state-space or plan-space setting.
 The rest of the paper is structured as follows: We start
by reviewing the literature. Then we give a quick overview
of the Graphplan and, next, we define higher order
exclusion relations and identify some key properties of
them. The section that follows, which constitutes the core
of the paper, presents the details of the method that
computes all higher order exclusion relations, the
backtracking free plan extraction procedure, and gives
some implementation hints that reduce the computational
effort. The next section provides experimental evidence by
applying the proposed algorithm on several simple
planning problems used in the literature. Finally the last
section concludes the paper and poses interesting future
research directions.

Related Work

In the literature there are many research efforts towards
computing higher order exclusion relations. These efforts
took mainly the form of computing invariants, i.e.,
expressions over a problem's propositions that remain true
eternally. To the best of our knowledge, a systematic and
complete algorithm to compute these relations neither has
been presented nor has been implemented. The common
situation was to recognize that incomplete algorithms
could be extended to compute all higher order exclusion
relations and, consequently, this would result in
backtracking free solution extraction. However, due to the
expected computational cost, no attempt has been made.
As we present in this paper, this extension is not
straightforward, whereas there are several opportunities for
optimizations; nevertheless, no optimization can transform
this problem to a tractable one.
 One of the first approaches to generate state invariants
was the DISCOPLAN system by Gerevini and Schubert
(1998). The approach consists of generating hypothetical
state constraints by inspection of operator effects and
preconditions, and checking each hypothesis against all
operators and the initial conditions. State invariants are

also computed by Fox and Long (1998) in the TIM system.
In this case, they are extracted from the automatically
inferred (by STAN system; Long and Fox, 1999) type
structure of a domain. TIM takes a domain description in
which no type information need be supplied and infers a
rich type structure from the functional relationships
between objects in the domain. If type information is
supplied TIM can exploit it as the foundation of the type
structure and will often infer an enriched type structure on
this basis. State invariants can be extracted from the way in
which the inferred types are partitioned.
 Probably the work synthesizing invariants reported in

(Rintanen 2000) is closest to the work presented in our

paper. Rintanen's algorithm is an improvement of the

approaches taken by (Gerevini and Schubert 1998) and

(Fox and Long 1998). However, the algorithm in (Rintanen

2000) sacrifices completeness wrt the invariants generated

in order to maintain polynomial time and is targeted

towards the implementation of practical planning systems.

Sacrificing completeness is not only because there is a

bound on the order of invariants, as well as because the

implementations of the functions „extend‟, „update‟,

„preserves‟ and „weaken‟ are incomplete, as stated in that

paper. It is mainly because Rintanen's algorithm iterates

only over the actions at each planning graph level. As we

show in our paper, this is not enough: in order to ensure

completeness, iterating over the interesting sets of

consistent actions at each planning graph level are

necessary.

 Similar is the work of Haslum and Geffner (2000), in

which they compute a family of heuristics referred as h
m
.

These heuristics are based on computing admissible

estimates of the costs of achieving sets of atoms of order m

from the initial state. For higher values of m the result

could be similar to that of our work. However, these

estimates are admissible, i.e., even if m equals the number

of propositions, underestimates might get produced. This is

because the proposed recursive computation iterates over

actions and not over sets of actions. Furthermore, no

implementation for m>2 is provided, even for small

problems, to give empirical evidence.
 Under a different perspective, our work could be
considered to be closer to symbolic forward exploration
techniques such as BDD-based planning algorithms (Bryan
1985; Edelkamp and Reffel 1999). Indeed, both
approaches consist of a time-consuming exhaustive
constraint generation phase and a backtracking free plan
extraction phase. Of course, the data structures used are
very different, with the ones employed by the BDD
approaches being more compact. However, the approach
proposed in our paper is still preliminary, whereas it does
not require to select a suitable ordering of the domain
variables.
 In this paper we adopt a somewhat different perspective:
Our aim is not to provide a new planning algorithm with
increased performance, or a faster way to compute
invariants. Our goal is to compute all invariants (higher

34

order exclusion relations or nands in our terminology),
without caring about computational costs. We consider
such a result important since (a) it will clearly demonstrate
the complexity of the task, (b) it will prove that computing
such information is a sufficient condition for generating
plans in a backtrack free manner, and (c) it will possibly
give rise to unexpected relaxations, i.e., to new families of
heuristics.
 Finally, computing sets of non-achievable propositions
at specific planning levels resembles the memoization
technique used in the original Graphplan to extract plans
from a planning graph (Blum and Furst, 1997). However,
whenever Graphplan determines that a sets of propositions
S is not achievable at level i and memoizes this piece of
information, there is no guarantee as of whether i is the
maximum possible level at which S is non-achievable, or if
S remains unachievable at i+1 etc. Furthermore, the way
Graphplan memoizes no-good sets of propositions is
neither systematic nor complete. So, although there are
similarities between our work and the memoization
technique of Graphplan, these are only superficial, with the
two approaches having fundamental differences.

Background

Let <P,A,I,G> a planning problem, where P the set of
propositions, A the set of actions, IP the initial state and
GP the goals. For every action aA, with Precs(a),
Dels(a) and Adds(a) we denote its preconditions, delete
effects and add effects respectively. In the following, we
will use the notation a=Precs(a), Dels(a), Adds(a) to
shortly define an action, e.g. a={p,q}, {p}, {r,s}.

A planning graph is a graph structure consisting of
alternating propositional and action levels, all being
grounded. Starting from propositional level 0 comprising
the propositions of I, an action a appears at action level i if
all of its preconditions appear at proposition level i,
without any exclusion relation holding among them.
Similarly, a proposition p appears at proposition level i, if
an action achieving p appears at action level i-1.

Mutual exclusion relations or mutexes over pairs of
actions and pairs of propositions can be defined recursively
as follows:
1. Two actions a and b are eternally mutually exclusive,

denoted by emutex({a,b}), if:
 a deletes a precondition or an add effect of b, or
 b deletes a precondition or an add effect of a.

2. Two propositions p and q are mutually exclusive at
proposition level i, denoted by mutexi({p,q}), if there is
no way to achieve them simultaneously at proposition
level i, equivalently there is no pair of non-mutexed
actions a and b at action level i-1, such that a achieves
p and b achieves q. In case there is a single action a
applicable at action level i-1 that achieves both p and q,
then no mutex between p and q exists at proposition
level i.

3. Two non-emutexed actions a and b are mutually
exclusive at action level i, denoted by mutexi({a,b}), if

there is a pair of propositions p and q, such that
pPrecs(a) and qPrecs(b), and a relation
mutexi({p,q}) holds.

Note that the basic Graphplan algorithm foresees
special actions called noop actions. For every proposition p
a noop action is defined, having p as its single precondition
and its single add effect. Noop actios are an elegant way to
define mutex relations between normal actions and
propositions.

Higher Order Exclusion Relations

We extend the definition of binary exclusion relations to
arbitrary sets of propositions or/and actions. The order of
each such set is its cardinality.

Definition 1. An exclusion relation over a set of
propositions PP at time t, denoted by nandt(P) means
that there is no plan with t parallel steps (t may be ) or
less, that renders the set of propositions P true
simultaneously.

For example, suppose that nandt({p,q,r}) holds. Then
propositions p, q and r cannot hold simultaneously at any
proposition level of the planning graph up to level t.
However, any subset of them, for example {p, r}, may hold
simultaneously at these levels.

We adopt the term nand (a common abbreviation for not
and) for higher order exclusion relations because “mutual”
refers to pairs of things, so it does not seem suitable for
higher order exclusion relations. On the other hand, nand
precisely reflects the semantics of exclusion relations,
since for a set of propositions P, nandt(P) means that their
conjunction cannot be true at planning graph level t (and
before), thus the negation of their conjunction holds.

There are two special cases for nandt relations. The first
is the case where t=, i.e. the set or propositions can never
be true simultaneously. The second case concerns singleton
sets, e.g. nandt({p}). The meening of this nand relation is
that proposition p cannot be achieved at or before level t;
this kind of information is usually referred as
“achievability analysis”, but it can be seen as a
generalization of the exclusion relation. In this paper, both
singleton and higher order nands are treated uniformly.

The following Lemmas emanate naturally from
Definition 1:

Lemma 1.  P1,P2P : P1P2  nandt(P1)nandt(P2).

Lemma 2.  PP , t1,t2N

and t2< t1:

nandt
1
(P)nandt

2
(P).

From an implementation point of view, Lemma 1 is
important since it imposes that only minimal nand sets
need to be retained in memory. Furthermore, Lemma 2
imposes that only latest nands over a set of propositions
should be retained. From now on, wherever we refer to
nand relations over sets of propositions, we will refer to
minimal sets of propositions.

Similar definitions hold for nand relations over actions:

35

Definition 2. An exclusion relation over a set of actions
AA at time t, denoted by nandt(A), means that there is no
plan of t parallel steps or less, where all actions in A can be
executed simultaneously at any step of the plan.

The following lemmas emanate naturally:

Lemma 3.  A1,A2A : A1A2  nandt(A1)nandt(A2).

Lemma 4.  AA , t1,t2N

and t2<t1:

nandt
1
(A)nandt

2
(A).

In the same way, we can characterize a nand relation
over a set of actions A as minimal, if no nand relation
between any proper subset of A holds at the same time.
Furthermore, only latest nand relations over sets of actions
should be retained. From now on, wherever we refer to
nand relations over sets of actions, we will refer to
minimal sets of actions.

Proposition 1. Relation nandt(A) holds over a set of
actions AA at time t, iff:
 A comprises two actions, a1 and a2, that are eternally

mutexed, or
 there is a set of propositions P such that nandt(P) holds

and, furthermore:

1. 
i

iaPrecsP)(

2.  PaPrecsAa ii)(,

3. 



ij

jii aPrecsPaPrecsAa)())((,

Proof: The first case is trivial. As for the second case,
condition 1 imposes that all sets of actions in A cannot
execute simultaneously, since P is a subset of the union of
their preconditions. Conditions 2 and 3 ensure that the set
of actions A is minimal, i.e. by removing any action from
this set, condition 1 does not hold any more. ■

Finally, we can define a nand relation over a set of

actions A and a set of propositions P at time t as following:

Definition 3. A set of non-nanded actions AA applicable
at time t is nanded with a set of non-nanded propositions
SP at time t, denoted with nandt(A,S), if there is no way
to execute simultaneously all actions of A at t, while
propositions of S being true at the same time t, i.e. at the
start time of their execution.

Definitions 1 and 2 can be seen as generalizations of
Definition 3, for the cases where A= or S=
respectively.

Proposition 2. A set of non-nanded actions A≠ may be

nanded with a set of non-nanded propositions S≠ at time

t, if there is a relation nandt(P), such that:

1. SP

2. 
i

iaPrecsSP)(

3.  SaPrecsAa ii)(,

4. )()(, SPaPrecsAa ii

5. 



ij

jii aPrecsSPaPrecsAa)())()((,

Proof: In order to execute all actions of A at time t, all

propositions of P-S must hold (condition 2). So, all

propositions of S cannot hold simultaneously, because in

that case the nandt(P) is violated due to condition 1.

Conditions 3, 4 and 5 ensure that action set A is minimal. ■

Definition 3 can specialize for the case where set A
comprises a single action. I.e., an action a is nanded with a
set of non-nanded propositions PP at time t, if there is no
way to execute a at t, while propositions of P being true at
the start time of the execution of a, i.e. at t.

Proposition 3. For each nandt(a,P) relation where a is an
action of a non-nanded set of actions A at time t,
nandt(A,S) also holds, where:

 Aa i
i

aPrecsPS


)(

Proof: According to Proposition 2, PPrecs(a)=,
otherwise nandt(a,P) is not minimal. Suppose now that
some of the propositions in P appear in the preconditions
of other actions of A, i.e. let‟s say that:

 aaAa i
ii

aecsP



,

)(Pr'

with PP'. In that case, in order for actions A to be

simultaneously applicable, propositions in P' should all be

true simultaneously at t. So, at least one of the propositions

in S=P-P' must be false at t. Note that S cannot be empty,

otherwise actions of A are nanded (Proposition 2). ■

Proposition 4: A set of propositions P is nanded at time t,
if there is no set A of non-nanded actions at time t-1 that
achieve a subset S of P, with the remaining propositions P-
S neither being nanded with A at t-1, nor being deleted by
any of the actions in A.

Proof: If there is a set of actions A applicable
simultaneously at t-1 and achieving S, and P-S is not
nanded with A at t-1, whereas no action aA deletes any of
the propositions in P-S, then is it straightforward that all
propositions in P can hold at t. Otherwise, they cannot. ■

Finally, let‟s define the notion of minimal nand
relations in a more formal way:

Definition 4. Any relation nandt(A,P) is minimal, if there
is no other relation nandt'(A',P'), where A'A and P'P
such that either of the following conditions hold:
 |A'|+|P'|<|A|+|P| and t'≥t.
 |A'|+|P'|=|A|+|P| and t'>t.

For any nand relation that it is not minimal, we can say
that it is subsumed by another nand relation.

36

Computing nands

Before going into the details of the nands computing
algorithm, we need some more definitions and propositions
that concern their propagation. We assume that only
minimal nands are retained.

The following Proposition generalizes the well known
monotonicity property of mutexes in Graphplan, i.e.
mutexes monotonically decrease. In this case, nand
relations only relax, i.e. they increase their order or
disappear.

Proposition 5. For any nand relation over a set of
propositions P at level t of a planning graph, there exists at
least one set of propositions SP that was nanded at levet
t-1 of the planning graph.

Proof: It is not possible for a set of propositions to be non-
nanded at some level t-1 of the planning graph, and being
nanded at the next level t, since if there is a plan of t-1
steps that achieves these propositions, then there is also a
plan of t steps, with the last step not containing any action.
So, either all propositions or some subset of them (even
stronger condition) were nanded at the previous level. ■

 According to Proposition 5, new nand relations are
created only when old nand relations break. Note that the
initial state of a planning problem involves nand relations
of order 1 for all propositions that are not members of I.
So, each time a proposition is achieved for the first time at
a planning graph level, new nand relations that involve this
proposition might arise. Similarly, each time a higher-order
nand relation breaks at some level, new nand relations of
an even higher order than the broken one might arise, each
one of them containing all the propositions of the broken
relation.

Proposition 6. A relation nandt(P) over a set of
propositions P breaks at proposition level t+1, if there is an
action a applicable at t that achieves some set of
propositions S, such that S and SP and, furthermore:
1. nandt(a, P-S) does not hold.
2. (P-S)Dels(a)=

Proof: We assumed that nand relations are minimal, so
any subset of the involved entities can hold
simultaneously. So, if the applicable action a achieves S at
time t+1, we can assume that all propositions in P-S, which
is a proper subset of P, could be true at t. Furthermore, the
set P-S is not nanded with a at t (first condition), so it is
possible to apply a while all propositions in P-S hold.
Finally, a does not delete any of the propositions in P-S
(second condition), so they can hold even after a‟s
application. So, there is a plan of t+1 steps, with a being
the single action of the last step, that achieves all
propositions in P , so there is no nandt+1(P). ■

Proposition 6 is very useful, because it says that a
single action is needed to break a nand, and this action just
needs to achieve a single proposition of the nand, without
neither deleting any one of the remaining propositions, nor

being nanded with them.

Definition 5. For a set of non-nanded actions A applicable
simultaneously at level t, we denote with negatet+1(A) the
minimal set of sets of propositions that cannot hold
simultaneously at time t+1, provided that no action outside
A has been applied at t. In this case, “minimal” refers to a
set S of sets Si, such that there are not two sets Si,SjS with
SiSj.

Proposition 7. For a set of actions A applicable at t,

negatet+1(A) consists of the following sets:

1. {q} for every qDels(a) of every aA

2. S, for any relation nandt(A,S), such that

  
 Aa

aAddsS)(

Proof: If actions of A are applied at t, then it is obvious
that no delete effect of any of these actions can be true at
t+1 (case 1). Furthermore, it no other action outside A has
been applied at t, then any set of propositions S that are
nanded with the set of actions A at t, should be added to
negatet+1(A), provided that no action of A achieves any of
them (in which case S can be true at t+1, because any
subset of S could be true at t). We do not consider the case
of any action of A deleting any of the propositions of S,
since we assume that all actions‟ delete effects are also
their preconditions, so none of them should appear at any
set S, according to Proposition 2. ■

Example 1. Suppose that there are two non-nanded actions
a and b applicable at t, with the following details:
a={p,q},{p},{r} and b ={s},{},{u}. Suppose also that
the following nands over propositions hold at t:
nandt({p,s,v}) and nandt(s,r,y). According to Proposition 2,
nandt({a},{s,v}) holds for a, so negatet+1({a}) =
{{p},{s,v}). Similarly, nandt({b},{r,y}) and
nandt({b},{p,v}) hold for b, so negatet+1({b})={{r,y},
{p,v}). Finally, nandt({a,b},{v}) and nandt({a,b},{r,y})
hold for the entire set of actions, so
negatet+1({a,b})={{p},{v}}. Note that {r,y} is not included
in negatet+1({a,b}), since action a achieves r.

The following two Propositions constitute the heart of the

nand computing algorithm. Interesting sets of actions are

defined in Definition 7 and explained further in the last

subsection.

Proposition 8. For any relation nandt(P) that breaks at
level t+1 according to Proposition 6, for all interesting sets
of non-nanded actions Ai at level t that can break this nand
relation, create new nand relations at t+1 for the sets of
propositions PN where

 
i

it Anegate)(1N

and both  and  refer to Cartesian products between sets.
All new (existing) nand relations subsumed by existing
(new) relations should be ignored (retracted).

37

Proof: Set N is a set consisting of other sets. Each set SN
comprises one element (set) from negatet+1(Ai) for every
interesting non-nanded set of actions Ai that break
nandt(P). Assuming that at least one of the sets of actions
Ai will apply at t, then at least one of the sets that form S
will have a proposition that is false at t+1. Otherwise, if no
set of actions Ai applies at t, nandt(P) won‟t break, so some
proposition of P will be false at t+1. So, in any case and for
any set RPN, either some proposition of P will be false,
or some proposition of each SN will be false, so new
nand relations for all sets of PN should be created.
Minimality requirement imposes to keep only those nand
relations (new or existing) that are not subsumed by others.
■

Example 2. Continuing example 1, suppose that u is a
newly achieved proposition, i.e. nandt({u}) breaks at t+1.
Suppose that there are two interesting ways to achieve u,
through the following alternative sets of actions: A1={b},
A2={a,b}. In example 1 we computed negatet+1({b}) and
negatet+1({a,b}). So, their Cartesian product is:

N= {{r,y,p}, {r,y,v}, {p,v}, {p,v}}

By removing duplicates, N becomes

N= {{r,y,p}, {r,y,v}, {p,v}}

By taking the product PN, new nands are created for
the sets:

{u,r,y,p}, {u,r,y,v}, {u,p,v}

Changing slightly the example, let‟s assume that u was
not a firstly achieved proposition, but there was a relation
nandt({u,z}) that broke at t+1 by the same set of sets of
actions. In that case, nothing changes in the above analysis,
except for the last step where the Cartesian product PN is
computed. So, new nand relations would be created at t+1
for the following sets of propositions:

{u,z,r,y,p}, {u,z,r,y,v}, {u,z,p,v}

Proposition 9. For any combination of relations nandt(Pi)
that break at level t+1 according to Proposition 6, for all
interesting sets of non-nanded actions Ai at level t that can
break simultaneously all these nand relations, create new
nand relations at t+1 for the sets of propositions PN
where P is the union of all propositions in Pi‟s and

 
i

it Anegate)(1N

and both  and  refer to Cartesian products between sets.
All new (existing) nand relations subsumed by existing
(new) relations should be ignored (retracted).

Proof: Proposition 9 generalizes Proposition 8 in that it
considers simultaneously breaking nand relations. The
only difference is that a set of nand relations break
simultaneously at t+1, so the union of their propositions
can be true simultaneously at that time. This can be
achieved by various alternative sets of actions Ai, each one
of them imposing that some sets of propositions cannot be

true simultaneously after Ai‟s application, i.e. negatet+1(Ai).
So, similar to the proof of Proposition 8, either some of the
Ai‟s has been applied, so any set in N has a false
proposition originating from negatet+1(Ai), or none of the
Ai‟s has been applied, so some of the nand(Pi) cannot break
at t+1. In any case, the sets of the Cartesian product PN
will always include a false proposition at t+1. ■

Lemma 5. If N is an empty set, no new nand relations are

created.

N might be an empty set, if for some set of actions Ai,

negatet+1(Ai)=.

Lemma 6. If there is no set of actions Ai that break

simultaneously all nandt(Pi) relations, then a nand relation

over P exists at t+1.

Definition 6. Given two sets of sets of propositions, R and
S, we say that R is more relaxed than S, denoted with
S  R, iff for any RR, there is some SS such that SR.

For example, if R={{p,q}, {q,r}} and S={{p},{r}},
S  R holds since for each set of R there is a subset in S.
The “relaxed” relation imposes a partial ordering over sets
of actions, through their negatet sets.

Definition 7. A set of non-nanded actions A at level t that
break a set of nandt(Pi) relations is interesting iff there is
no other set of non-nanded actions B at level t that break
the same set of nand relations such that
negatet+1({A}) negatet+1({B}).

Proposition 10. Non-interesting sets of actions among

those that break the same nand relation can be ignored.

Proof: Suppose two sets of actions A and B, with

R=negatet+1(A) and S=negatet+1(B), such that S  R. Any

entry RS of the Cartesian product RS, with RR and

SS, would be subsumed by the entry RSR=R, where

SRS such that SRR, since R RS and we are interested

only in minimal nand relations. ■

Lemma 7. If there is a set of actions A among those that
break a nand, such that negatet+1(A)=, no other set of
actions needs to be considered.

So, we can now present the algorithm that computes all
nand relations. The algorithm focuses on nand relations
over sets of propositions; however nand relations over sets
of actions or between sets of propositions and set of actions
can be computed using Propositions 1 and 2.

Algorithm 1. Computing nand relations over propositions.

1. Create nand({p}) relations for all propositions pI.
Let t=0

2. While there are nand relations over G and the planning

graph has not yet leveled off, repeat the following:

a. Find the broken nand relations at level t+1,

according to Proposition 6. Each one of them is

replaced by a nandt relation.

38

b. For each combination of broken nand relations,

apply Proposition 9 to create new nand relations.

c. Let t=t+1.

Step 1 concerns initialization, by recording all

propositions that are not included in the initial state I as

unary nands. Step 2 states the termination condition: Either

achieving the goals G, or leveling off the planning graph.

Achieving G means that there is no nand relation over any

subset of G. Leveling off occurs if during the last iteration

no nand relation has broken.

Step 2a concerns breaking nand relations. According to

Proposition 6, a single action is needed to break a nand

relation, however we need to record all alternative actions

that can be used for that purpose. Note that only newly

applicable actions, i.e. actions that are firstly applied at the

current planning graph level, can break unary nands.

Finally, step 2b generates new nand relations. For each

set of broken nands, all interesting sets of actions that can

break them should be considered. As it is clear, this is the

computationally most expensive step of the algorithm, so

we will discuss it further in the section that concerns

implementation details.

Algorithm 1 computes the nand relations progressively,

i.e. new relations are always nand, until they break. So, if

the algorithm terminates before the planning graph levels

off, there might remain some nand relations, although

these relations would possibly break at subsequent levels.

Extracting a plan

If we are interested in finding a plan, then as soon as no

nand exists among G, we can proceed with the plan

extraction phase. This can be done in a backtracking free

way by the following algorithm, which results in optimal

parallel plans.

Algorithm 2. Extracting a plan.

1. Let G be initially equal to G. Let t be the first level of

the planning graph, where all propositions in G appear

without any nand between them.

2. Execute repeatedly the following steps:

a. If G I, display the plan and stop.

b. Let Broken be the set of all nand relations over the

propositions of G at level t-1.

c. Find an interesting set of actions Ai non-nanded at t-

1, that break simultaneously all nand relations in

Broken, such that no subset of G appears in

negatet(Ai).

d. Let G' be the union of the preconditions of the

actions in Ai and of the subset of propositions of G

that are not achieved by any action of Ai.

e. Let Stept-1=Ai. Let t=t-1. Let G= G'.

Algorithm 2 is a generalization of the plan extraction phase
of Graphplan. Indeed, at each level a set of non-nanded

actions that break the related nand relations of the previous
level is selected (step 2c), with the requirement that no new
nand relations over the current set of open goals is
generated. The preconditions of the actions of Ai, as well as
the not achieved open goals, constitute the new set of open
goals for the previous level of the planning graph.

Proposition 11. Provided that all nand relations have been
computed up to level t, for any set of not nanded
propositions G at planning graph level t, there is always a
set of non-nanded actions Ai at t-1 such that that no subset
of G appears in negatet(Ai). Furthermore, the set G'
comprising the union of the preconditions of the actions in
Ai and the subset of propositions of G that are not achieved
by any action of Ai is nand-free at level t-1.

Proof: Suppose that there is no nand relation over
propositions of G at level t-1. In this case the proof is
trivial, since Ai can simply be the empty set of actions.

So, suppose that Broken is the non-empty set of subsets
of G that are nanded at level t-1. Let G1G the subset of G
comprising the union of all propositions appearing in nand
relations of Broken. So, we need to find a set of actions Ai
that can break all nand relations in Broken simultaneously.
This set of actions should exist, since otherwise a nand
relation over G1 should have been created at level t,
according to Lemma 6. Furthermore, there should exist at
least one option Ai that does not include any subset of the
remaining propositions G-G1 in negatet(Ai), otherwise if all
options Ai would include at least one SiG-G1 in
negatet(Ai), then the Cartesian product would create,
among other, a new nand relation over the set G1S, where
S is the union of the various Si‟s . Clearly, G1S is a subset
of G, so this is a contradiction since we assumed that no
nand exists over G at t.
 Since no subset of G appears in negatet(Ai), no nand

can hold between preconditions of Ai and sets of non-

achieved propositions of G from actions of Ai. Indeed, if

there was any nand relation between some preconditions of

Ai and some propositions G2G that are not achieved by

any action of Ai, then propositions in G2 should appear in

negatet(Ai), which is a contradiction. Furthermore, no nand

relation exists between sets of not achieved propositions of

G, since we assumed that Ai breaks all nand relations

between propositions of G, so Ai should achieve at least

one proposition for each broken nand relation. So, there is

no nand relation over the set comprising the preconditions

of all actions of Ai and the not achieved propositions of G.

If this set is referenced as G', we proved that by starting

with a set of non-nanded propositions at level t, we can

result with a new set of non-nanded propositions at level t-

1. ■

Lemma 8. Provided that all nand relations have been

computed up to the level where G appears without any

nand over its propositions, Algorithm 2 extracts a plan in a

backtracking-free way.

39

 It is expected that for large size problems, it will be

practically impossible to compute all nand relations. In that

case, one can set a limit on the order of the nand relations

computed by Algorithm 1, and ignore any relation above

this limit. In such situations, the property of Algorithm 2

for backtracking-free plan extraction vanishes. In that case,

a common Graphplan-like search phase could be adopted,

taking into account the higher order nand relations

whenever sets of actions are selected at the various

planning graph levels.

Implementation Details

The most time consuming step of Algorithm 1 is step 2b,

which iterates over each set of broken nands, computing all

the alternative interesting sets of actions capable of

breaking all the nands of the set. So, managing to reduce

either the number of sets of broken nands that are

considered, or the number of alternative sets of actions that

break each set of nands is of great value.

 Concerning the sets of broken nands, we can adopt a

progressive approach, starting from small sets of broken

nands and going to larger ones. If for a set of broken nands

there is no way to break all of them simultaneously (case

of Lemma 6), there is no reason to examine any superset of

them. This approach can easily be implemented using a

depth-first search enumeration of the various subsets.

As for the alternative sets of actions that can break

simultaneously a set of broken nands, one can start with

minimal sets consisting from at most one action for each

broken nand of the set (it might happen that the same

action breaks more than one nands of the set). These are

the initial seeds. Then, each such set A can be enhanced

progressively with new actions a, such that a is non-

nanded with A and achieves something of negatet+1(A)

(obviously not the propositions deleted by A‟s actions),

such that negatet+1(A)  negatet+1(A-a) does not hold. In

order to avoid considering adding the same sets of

additional actions in different order, we can post a

lexicographic order on the new actions that are used to

enhance the initial seeds.

However, even if alternative sets of actions are

computed as described in the previous paragraph, it might

happen that non-interesting sets of actions arise,

originating from different initial seeds. So a check among

the alternative sets of actions should be performed, before

proceeding with computing the Cartesian product.

Finally, it seems that of great complexity is the

computation of the Cartesian product. To be as efficient as

possible, one should follow a divide-and-conquer

approach, with the overall product being analyzed in

subproducts that are computed recursively. After

computing any such sub-product, deleting duplicates and

subsumed sets of propositions greatly accelerates the

overall process. This elimination is greatly facilitated by

keeping the subproducts sorted based on the cardinality of

their elements.

Experimentation

We implemented the proposed algorithms (computing
nands and plan extraction) in Prolog. Particularly, we used
the ECLiPSe Constraint Logic Programming Platform for
running our experiments, although we haven‟t exploited
any of the constraint programming features of the
language. In our experiments we were not interested in
measuring the solution time; this is an issue of future
research, using a more optimized version of our code.
However, we can report that in all experiments mentioned
in this Section, solving time varied from a few seconds to a
few minutes, with the contribution of the plan extraction
phase to the total time being negligible

2
. All problems have

been solved optimally in a backtracking free manner.

Figure 1. A simple blocks world problem with five blocks.

First we present an example from the blocks world
problem and the version with the three operators (Figure
1). Table 2 summarizes the nand relations found on this
problem up to level 3, where a solution was found. The
cnand refers to broken nands, whereas enand refers to the
eternal nand relations.

Order cnands enands Total

2 28 134 162

3 6 67 73

4 0 2 2

Totals 34 203 237

Table 1. nands found for the five blocks problem up to goal

achievement.

If we continue running Algorithm 1 until the graph
levels off, the following nands can be found:

2
 The code and the problem files used for the experimentation are

available through contacting the authors.

A

B

C

D

E

E

B

A

D

C

Initial state Goals

40

Order cnands enands Total

2 52 110 162

3 113 20 133

4 94 30 124

5 0 24 24

Totals 259 184 443

Table 2. nands found for the five blocks problem up to level off.

Examples of eternal nands of higher order are:

nand({on(a,b), on(b,d), on(d,a)})
nand({on(a,b), on(b,d), on(d,e), on(e,a)})

nand({ on(a,b), on(b,c), on(c,d), on(d,e), on(e,a)})

whereas exampled of broken nands are the following:

nand2({on(b,table), on(d,a), on(e,d)})
nand3({on(c,e), on(d,a), on(e,d)})

nand3({on(a,d), on(b,a), on(c,b), on(d,table)})

 We claim than broken nand relations are more
interesting for plan extraction, since they are related to the
specific problem instance. Indeed, eternal nand relations
could be considered domain knowledge and be provided
manually, whereas broken nand relations should always be
computed from scratch for each problem.

The second problem is strips-gripper-x-1 from the
gripper domain of IPC-1. There are two rooms and a robot
that can move between them. The robot has two grippers
(left and right) that can carry balls. There are four balls in
rooma that must be moved to roomb. The operators of the
domain are move for the robot, pick and drop for each
gripper. An optimal plan for this problem has 6 steps,
where each triple of steps consists of two pick, one move
and two drop actions. The graph levels off at level 8. Table
2 presents the nands after the graph has leveled off.

Order cnands enands Total

2 12 45 57

3 52 0 52

4 52 0 52

Totals 116 45 161

Table 3. nands found for the gripper problem up to level off.

Examples of nands found are the following:

nand4({at(ball4,roomb),carry(ball2,right),
carry(ball3,left)})

nand5({at_robby(roomb),at(ball4,roomb),
carry(ball2, right), carry(ball3, left)})

Finally, we present the application of the proposed
algorithms to the Flat Tire domain and specifically the
problem fixit, which was also used in (Blum and Furst,
1997). This problem concerns changing a tire using actions
such as jacking the car up and down, loosen and tighten the
nuts, opening and closing the car boot, fetching and putting

away objects in the car boot etc. Table 4 summarizes the
numbers of nands computed for the various orders after the
planning graph leveled off.

Order cnands enands Total

2 38 28 66

3 51 0 51

4 28 0 28

5 8 0 8

Totals 125 28 153

Table 4. nands found for the Flat Tire “fixit” problem.

Examples of nands found are the following:

nand9({closed(boot), in(jack,boot), in(wheel1,boot),
in(wrench,boot), loose(nuts,hub)})

nand8({in(jack,boot), in(wheel1,boot),
in(wrench,boot), loose(nuts, hub)})

nand11({closed(boot), in(wrench, boot),
on(wheel2, hub), tight(nuts, hub)})

nand4({closed(boot), in(wrench, boot), loose(nuts, hub)})

nand2({free(hub), on_ground(hub)})

nand2({closed(boot), have(wrench)})

Although the set of examples is neither extensive nor
diverse enough to extract general conclusions, we will risk
stating a few of them based on, apart from the actual
results, our intuition. In all three experiments, the number
of cnands exceeds the number of enands, when the
planning graph levels off. Although this is not a general
rule, it is expected that this is the most common case.
Table 1 is not an exception, since it does not concern a
leveled-off graph.

Another interesting observation concerns the numbers
of total exclusion relations (sum of cnands and enands)
when the planning graphs level off. In all three cases, the
total number decreases with the order. Again, this is not a
general rule but it seems that it is a situation common in
many of the benchmark domains used in the planning
literature. Our intuition suggest that breaking this rule, i.e.,
having more higher order exclusion relations than lower
order ones, would indicate more complex problems.

However, this analysis was not the goal of this paper;
indeed, we were interested only in providing a complete
and systematic algorithm to compute all higher order
exclusion relations, with the examples being selected only
for demonstration purposes. In a subsequent paper we will
perform such an analysis based on experimental results
from more domains and from several problems of various
sizes from each domain.

41

Conclusions and Future Work

In this paper we presented a systematic method to compute
all higher order exclusion relations between the
propositions of a planning problem. We denote each such
relation over a set of propositions P with nandt(P), since
the conjunction of propositions of P cannot be true at any
planning graph level t't. We also defined nand relations
over sets of actions, as well as over sets of actions and sets
of propositions, and we proved several interesting
properties for them.
 Having computed all the nand relations for a problem,
we presented an algorithm that extracts optimal parallel
plans, and we proved that this algorithm is backtracking
free. Finally, we implemented our algorithm and tested it
on several planning problems from the literature. For each
such problem we observed its behavior in terms of number
of nand relations computed and their distribution over the
various orders. As expected, all these problems were
solved optimally and in a backtracking free manner.
 Our next step concerns trying to optimize our code in
terms of efficiency of the nand computing algorithm, using
some form of intermediate results caching and by
reiplementing it in a more efficient platform. Next, we plan
to experiment with several relaxations as, e.g., setting
limits on the order of the computed nands and analyzing
the overall tradeoff between the time spent for nand
computation and for plan extraction in different domains.
The same analysis can be performed for state-space
heuristic planners, using the nand relations for heuristic
guidance; for graphplan-based planners when optimal
parallel plans are requires; and for satisfiability planners,
where nand relations constitute higher order constraints.
 Another line of research would be to examine how the
algorithm that computes the nands can take advantage of
precomputed nand relations, that could be provided either
by hand or could be obtained automatically through
domain analysis. Finally, analyzing the order and the
number of nand relations for various problems of the same
domain and how they depend on the size of the problem
might be an interesting indicator of the difficulty to solve
problems from this domain.

References

Blum, A. and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence, 90, 281-300.

Bonet, B., Loerincs, G. and Geffner, H. 1997. A robust and fast
action selection mechanism for planning. In Proceedings of
AAAI-97.

Bryan, R.E. 1985. Symbolic manipulation of Boolean functions
using a graphical representation. In DAC, pages 688-694.

Edelkamp, S. and Reffel, F. 1999. Deterministic State Space
Planning with BDDs. In Proc. of the 5th European Conference on
Planning (ECP), Durham, pages 381-382.

Fox, M. and Long, D. 1998, "The Automatic Inference of State
Invariants in TIM", Journal of Artificial Intelligence Research, 9,
367-421

Freuder, E.C. 1978. Synthesizing constraint expressions.
Communications of the ACM, 21(11):958-965.

Gerevini, A. and Schubert, L.K. 1998. Inferring State Constraints
for Domain-Independent Planning, in Proceedings of the 15th
National Conference on Artificial Intelligence / 10th Innovative
Applications of Artificial Intelligence Conference, AAAI/IAAI
98, Madison, Wisconsin, USA, pages 905-912, AAAI Press / The
MIT Press.

Haslum, P. and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. In Proc. of the 5th Int. Conf. on AI Planning
and Scheduling (AIPS), Colorado, pp. 140-149. AAAI Press.

Hoffmann, J. and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial
Intelligence Research, 14, 253-302.

Kautz H. and Selman S. 1998. BLACKBOX: A New Approach to
the Application of Theorem Proving to Problem Solving.
Working notes of the Workshop on Planning as Combinatorial
Search, held in conjunction with AIPS-98, Pittsburgh, PA.

Koehler, J., Nebel, B., Hoffmann, J. and Dimopoulos, Y. 1997.
Extending Planning Graphs to an ADL Subset. In Proceedings of
the European Conference on Planning (ECP-97), Springer LNAI
1348, pages 273-285.

Long, D. and Fox, M. 1999. Efficient Implementation of the Plan
Graph in STAN. Journal of Artificial Intelligent Research, vol.10,
pp.87-115.

Nguyen, X., and Kambhampati S., 2001. Reviving Partial Order
Planning. In Proceedings of IJCAI-2001.

Rintanen, J. 2000, An iterative algorithm for synthesizing
invariants, in Proceedings of the 17th National Conference on
Artificial Intelligence / 12th Innovative Applications of AI
Conference, pages 806-811, AAAI Press.

Smith D.E. and Weld D.S. 1999. Temporal Planning with Mutual
Exclusion Reasoning. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence.

Weld, D.S. and Smith, D.E. 1998. Conformant Graphplan. In
Proceedings of AAAI-98.

42

