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Abstract 

Planning graphs and binary mutual exclusion (mutex) 
relations presented a major breakthrough in automated 
planning technology. They have been exploited in three 
ways, i.e. extracting optimal parallel plans through search in 
the space of planning subgraphs; extracting informative 
heuristics to guide search either in state- or in plan-space; 
and converting the planning problem into an equivalent 
satisfiability one. This paper advances the area of planning 
graphs a step further, by providing for the first time a 
systematic and complete algorithm to compute exclusion 
relations (or nands as we call them) without a bound on 
their order. Computing all exclusion relations among the 
propositions of a planning problem is equivalent to 
enforcing strong k-consistency, with k being the number of 
propositions, i.e., global consistency. The expected 
consequence is that, if global consistency has been 
achieved, plans can be extracted in a backtracking free 
manner. This is proved in the paper for the proposed 
algorithm and demonstrated experimentally over various 
small problems from several planning domains. The obvious 
limitation is that it is practically impossible to compute all 
higher order exclusion relations for all problems but the 
smaller ones. So, our work is mainly of theoretical 
importance; its potential practical importance lies in serving 
as a starting point for obtaining unexplored relaxations, i.e., 
new families of heuristics, to be exploited by a graph or 
state-space based search procedure. 

Introduction 

Planning graphs were introduced more than a decade ago 
(Blum and Furst, 1997) and have significantly advanced 
automated planning technology, by making possible to 
solve large problem instances without domain specific 
heuristics, for the first time. At the time of their 
introduction, they were the dominant technology, as 
demonstrated by the systems participating in the first 
international planning competition

1
: three of them, IPP 

(Koehler et. al, 1997), SGP (Corin et. al. 1998) and STAN 
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(Long and Fox, 1999) were variations of the basic 
Graphplan algorithm, Blackbox (Kautz and Selman, 1998) 
was using a planning graph to transform the planning 
problem into an equivalent satisfiability one, and only one, 
HSP (Bonet et. al. 1997), was not using planning graphs 
and exclusion relations.  
 Even though, in the years that followed, domain 
independent heuristic state-space planners took the lead in 
the planning technology, they exploited planning graphs 
and mutual exclusion relations to extract more informative 
heuristics and recognize non-achievable propositions. FF 
(Hoffmann and Nebel, 2001) is a representative case, since 
its success was mostly based on applying the basic 
Graphplan algorithm in a relaxed version of the planning 
problem with no delete effects (and, thus, no mutexes at 
all. Planning graphs have also been used to compute 
heuristics for plan-space planners (Nguyen and 
Kambhampati, 2001), whereas extensions for temporal and 
conformant domains have been devised (Weld and Smith, 
1998; Smith and Weld 1999). 
 Both Graphplan and all of its variations are based on the 
computation of binary exclusion relations. Computing 
higher order exclusion relations has been considered 
inefficient, since the extra computational cost is not 
generally compensated by a faster plan extraction search 
phase. Although, some approaches to compute higher order 
relations, usually referred as invariants, have been 
introduced (presented at the Related Work section), to the 
best of our knowledge no systematic and complete method 
has been proposed till now and, consequently, no empirical 
evidence has been presented to support this claim. 
 This paper presents a systematic and complete method to 
compute higher order exclusion relations, or nands as we 
call them, in a propositional setting. The proposed method 
can be used to compute all exclusion relations of any order, 
without setting an upper bound on it. It is based on the well 
known monotonicity property of the exclusion relations 
(Long and Fox, 1999) and succeeds in minimizing the 
number of alternative sets of action combinations that need 
to be taken into account at each level of the planning 
graph. Computing all exclusion relations among the 
propositions of a planning problem is equivalent to 
enforcing strong k- consistency, with k being the number of 
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propositions, i.e., global consistency (Freuder, 1978). The 
expected consequence is that, if global consistency has 
been achieved, plans can be extracted in a backtracking 
free manner. This is proved in the paper for the proposed 
algorithm, and is also demonstrated using an 
implementation in Prolog.  
 The obvious limitation of the proposed algorithm, also 
well known attribute of any k-consistency enforcing 
algorithm for large values of k, is that it is practically 
impossible to compute all higher order exclusion relations 
for any problem but the smaller ones. So, our work is 
mainly of theoretical importance; we do not intend to 
outperform state-of-the-art planning systems in terms of 
time needed to solve problems. However, having such a 
systematic and complete algorithm to compute higher 
order exclusion relations might serve as a starting point for 
obtaining unexplored relaxations, i.e. new heuristics, to be 
exploited for plan extraction using search either in a 
graphplan setting or in a state-space or plan-space setting. 
 The rest of the paper is structured as follows: We start 
by reviewing the literature. Then we give a quick overview 
of the Graphplan and, next, we define higher order 
exclusion relations and identify some key properties of 
them. The section that follows, which constitutes the core 
of the paper, presents the details of the method that 
computes all higher order exclusion relations, the 
backtracking free plan extraction procedure, and gives 
some implementation hints that reduce the computational 
effort. The next section provides experimental evidence by 
applying the proposed algorithm on several simple 
planning problems used in the literature. Finally the last 
section concludes the paper and poses interesting future 
research directions.  

Related Work 

In the literature there are many research efforts towards 
computing higher order exclusion relations. These efforts 
took mainly the form of computing invariants, i.e., 
expressions over a problem's propositions that remain true 
eternally. To the best of our knowledge, a systematic and 
complete algorithm to compute these relations neither has 
been presented nor has been implemented. The common 
situation was to recognize that incomplete algorithms 
could be extended to compute all higher order exclusion 
relations and, consequently, this would result in 
backtracking free solution extraction. However, due to the 
expected computational cost, no attempt has been made. 
As we present in this paper, this extension is not 
straightforward, whereas there are several opportunities for 
optimizations; nevertheless, no optimization can transform 
this problem to a tractable one. 
 One of the first approaches to generate state invariants 
was the DISCOPLAN system by Gerevini and Schubert 
(1998). The approach consists of generating hypothetical 
state constraints by inspection of operator effects and 
preconditions, and checking each hypothesis against all 
operators and the initial conditions. State invariants are 

also computed by Fox and Long (1998) in the TIM system. 
In this case, they are extracted from the automatically 
inferred (by STAN system; Long and Fox, 1999) type 
structure of a domain. TIM takes a domain description in 
which no type information need be supplied and infers a 
rich type structure from the functional relationships 
between objects in the domain. If type information is 
supplied TIM can exploit it as the foundation of the type 
structure and will often infer an enriched type structure on 
this basis. State invariants can be extracted from the way in 
which the inferred types are partitioned. 
 Probably the work synthesizing invariants reported in 

(Rintanen 2000) is closest to the work presented in our 

paper. Rintanen's algorithm is an improvement of the 

approaches taken by (Gerevini and Schubert 1998) and 

(Fox and Long 1998). However, the algorithm in (Rintanen 

2000) sacrifices completeness wrt the invariants generated 

in order to maintain polynomial time and is targeted 

towards the implementation of practical planning systems. 

Sacrificing completeness is not only because there is a 

bound on the order of invariants, as well as because the 

implementations of the functions „extend‟, „update‟, 

„preserves‟ and „weaken‟ are incomplete, as stated in that 

paper. It is mainly because Rintanen's algorithm iterates 

only over the actions at each planning graph level. As we 

show in our paper, this is not enough: in order to ensure 

completeness, iterating over the interesting sets of 

consistent actions at each planning graph level are 

necessary. 

 Similar is the work of Haslum and Geffner (2000), in 

which they compute a family of heuristics referred as h
m
. 

These heuristics are based on computing admissible 

estimates of the costs of achieving sets of atoms of order m 

from the initial state. For higher values of m the result 

could be similar to that of our work. However, these 

estimates are admissible, i.e., even if m equals the number 

of propositions, underestimates might get produced. This is 

because the proposed recursive computation iterates over 

actions and not over sets of actions. Furthermore, no 

implementation for m>2 is provided, even for small 

problems, to give empirical evidence. 
 Under a different perspective, our work could be 
considered to be closer to symbolic forward exploration 
techniques such as BDD-based planning algorithms (Bryan 
1985; Edelkamp and Reffel 1999). Indeed, both 
approaches consist of a time-consuming exhaustive 
constraint generation phase and a backtracking free plan 
extraction phase. Of course, the data structures used are 
very different, with the ones employed by the BDD 
approaches being more compact. However, the approach 
proposed in our paper is still preliminary, whereas it does 
not require to select a suitable ordering of the domain 
variables.  
 In this paper we adopt a somewhat different perspective: 
Our aim is not to provide a new planning algorithm with 
increased performance, or a faster way to compute 
invariants. Our goal is to compute all invariants (higher 
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order exclusion relations or nands in our terminology), 
without caring about computational costs. We consider 
such a result important since (a) it will clearly demonstrate 
the complexity of the task, (b) it will prove that computing 
such information is a sufficient condition for generating 
plans in a backtrack free manner, and (c) it will possibly 
give rise to unexpected relaxations, i.e., to new families of 
heuristics. 
 Finally, computing sets of non-achievable propositions 
at specific planning levels resembles the memoization 
technique used in the original Graphplan to extract plans 
from a planning graph (Blum and Furst, 1997). However, 
whenever Graphplan determines that a sets of propositions 
S is not achievable at level i and memoizes this piece of 
information, there is no guarantee as of whether i is the 
maximum possible level at which S is non-achievable, or if 
S remains unachievable at i+1 etc. Furthermore, the way 
Graphplan memoizes no-good sets of propositions is 
neither systematic nor complete. So, although there are 
similarities between our work and the memoization 
technique of Graphplan, these are only superficial, with the 
two approaches having fundamental differences. 

Background 

Let <P,A,I,G> a planning problem, where P the set of 
propositions, A the set of actions, IP the initial state and 
GP the goals. For every action aA, with Precs(a), 
Dels(a) and Adds(a) we denote its preconditions, delete 
effects and add effects respectively. In the following, we 
will use the notation a=Precs(a), Dels(a), Adds(a) to 
shortly define an action, e.g. a={p,q}, {p}, {r,s}. 

A planning graph is a graph structure consisting of 
alternating propositional and action levels, all being 
grounded. Starting from propositional level 0 comprising 
the propositions of I, an action a appears at action level i if 
all of its preconditions appear at proposition level i, 
without any exclusion relation holding among them. 
Similarly, a proposition p appears at proposition level i, if 
an action achieving p appears at action level i-1. 

Mutual exclusion relations or mutexes over pairs of 
actions and pairs of propositions can be defined recursively 
as follows: 
1. Two actions a and b are eternally mutually exclusive, 

denoted by emutex({a,b}), if: 
 a deletes a precondition or an add effect of b, or 
 b deletes a precondition or an add effect of a. 

2. Two propositions p and q are mutually exclusive at 
proposition level i, denoted by mutexi({p,q}), if there is 
no way to achieve them simultaneously at proposition 
level i, equivalently there is no pair of non-mutexed 
actions a and b at action level i-1, such that a achieves 
p and b achieves q. In case there is a single action a 
applicable at action level i-1 that achieves both p and q, 
then no mutex between p and q exists at proposition 
level i. 

3. Two non-emutexed actions a and b are mutually 
exclusive at action level i, denoted by mutexi({a,b}), if 

there is a pair of propositions p and q, such that 
pPrecs(a) and qPrecs(b), and a relation 
mutexi({p,q}) holds. 

Note that the basic Graphplan algorithm foresees 
special actions called noop actions. For every proposition p 
a noop action is defined, having p as its single precondition 
and its single add effect. Noop actios are an elegant way to 
define mutex relations between normal actions and 
propositions. 

Higher Order Exclusion Relations 

We extend the definition of binary exclusion relations to 
arbitrary sets of propositions or/and actions. The order of 
each such set is its cardinality. 

Definition 1. An exclusion relation over a set of 
propositions PP at time t, denoted by nandt(P) means 
that there is no plan with t parallel steps (t may be ) or 
less, that renders the set of propositions P true 
simultaneously.  

For example, suppose that nandt({p,q,r}) holds. Then 
propositions p, q and r cannot hold simultaneously at any 
proposition level of the planning graph up to level t. 
However, any subset of them, for example {p, r}, may hold 
simultaneously at these levels. 

We adopt the term nand (a common abbreviation for not 
and) for higher order exclusion relations because “mutual” 
refers to pairs of things, so it does not seem suitable for 
higher order exclusion relations. On the other hand, nand 
precisely reflects the semantics of exclusion relations, 
since for a set of propositions P, nandt(P) means that their 
conjunction cannot be true at planning graph level t (and 
before), thus the negation of their conjunction holds. 

There are two special cases for nandt relations. The first 
is the case where t=, i.e. the set or propositions can never 
be true simultaneously. The second case concerns singleton 
sets, e.g. nandt({p}). The meening of this nand relation is 
that proposition p cannot be achieved at or before level t; 
this kind of information is usually referred as 
“achievability analysis”, but it can be seen as a 
generalization of the exclusion relation. In this paper, both 
singleton and higher order nands are treated uniformly. 

The following Lemmas emanate naturally from 
Definition 1: 

Lemma 1.  P1,P2P : P1P2  nandt(P1)nandt(P2). 

Lemma 2.  PP , t1,t2N
 
and t2< t1: 

nandt
1
(P)nandt

2
(P). 

From an implementation point of view, Lemma 1 is 
important since it imposes that only minimal nand sets 
need to be retained in memory. Furthermore, Lemma 2 
imposes that only latest nands over a set of propositions 
should be retained. From now on, wherever we refer to 
nand relations over sets of propositions, we will refer to 
minimal sets of propositions. 

Similar definitions hold for nand relations over actions: 
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Definition 2. An exclusion relation over a set of actions 
AA at time t, denoted by nandt(A), means that there is no 
plan of t parallel steps or less, where all actions in A can be 
executed simultaneously at any step of the plan.  

The following lemmas emanate naturally: 

Lemma 3.  A1,A2A : A1A2  nandt(A1)nandt(A2). 

Lemma 4.  AA , t1,t2N
 
and t2<t1: 

nandt
1
(A)nandt

2
(A). 

In the same way, we can characterize a nand relation 
over a set of actions A as minimal, if no nand relation 
between any proper subset of A holds at the same time. 
Furthermore, only latest nand relations over sets of actions 
should be retained. From now on, wherever we refer to 
nand relations over sets of actions, we will refer to 
minimal sets of actions. 

Proposition 1. Relation nandt(A) holds over a set of 
actions AA at time t, iff: 
 A comprises two actions, a1 and a2, that are eternally 

mutexed, or 
 there is a set of propositions P such that nandt(P) holds 

and, furthermore: 

1. 
i

iaPrecsP )(  

2.  PaPrecsAa ii )(,  

3. 



ij

jii aPrecsPaPrecsAa )())((,  

Proof: The first case is trivial. As for the second case, 
condition 1 imposes that all sets of actions in A cannot 
execute simultaneously, since P is a subset of the union of 
their preconditions. Conditions 2 and 3 ensure that the set 
of actions A is minimal, i.e. by removing any action from 
this set, condition 1 does not hold any more. ■ 

Finally, we can define a nand relation over a set of 

actions A and a set of propositions P at time t as following: 

Definition 3. A set of non-nanded actions AA applicable 
at time t is nanded with a set of non-nanded propositions 
SP at time t, denoted with nandt(A,S), if there is no way 
to execute simultaneously all actions of A at t, while 
propositions of S being true at the same time t, i.e. at the 
start time of their execution.  

Definitions 1 and 2 can be seen as generalizations of 
Definition 3, for the cases where A= or S= 
respectively. 

Proposition 2. A set of non-nanded actions A≠ may be 

nanded with a set of non-nanded propositions S≠ at time 

t, if there is a relation nandt(P), such that: 

1. SP 

2. 
i

iaPrecsSP )(  

3.  SaPrecsAa ii )(,  

4.  )()(, SPaPrecsAa ii  

5. 



ij

jii aPrecsSPaPrecsAa )())()((,  

Proof: In order to execute all actions of A at time t, all 

propositions of P-S must hold (condition 2). So, all 

propositions of S cannot hold simultaneously, because in 

that case the nandt(P) is violated due to condition 1. 

Conditions 3, 4 and 5 ensure that action set A is minimal. ■ 

Definition 3 can specialize for the case where set A 
comprises a single action. I.e., an action a is nanded with a 
set of non-nanded propositions PP at time t, if there is no 
way to execute a at t, while propositions of P being true at 
the start time of the execution of a, i.e. at t.  

Proposition 3. For each nandt(a,P) relation where a is an 
action of a non-nanded set of actions A at time t, 
nandt(A,S) also holds, where: 

 Aa i
i

aPrecsPS


 )(  

Proof: According to Proposition 2, PPrecs(a)=, 
otherwise nandt(a,P) is not minimal. Suppose now that 
some of the propositions in P appear in the preconditions 
of other actions of A, i.e. let‟s say that: 

 aaAa i
ii

aecsP



,

)(Pr'  

with PP'. In that case, in order for actions A to be 

simultaneously applicable, propositions in P' should all be 

true simultaneously at t. So, at least one of the propositions 

in S=P-P' must be false at t. Note that S cannot be empty, 

otherwise actions of A are nanded (Proposition 2). ■ 

Proposition 4: A set of propositions P is nanded at time t, 
if there is no set A of non-nanded actions at time t-1 that 
achieve a subset S of P, with the remaining propositions P-
S neither being nanded with A at t-1, nor being deleted by 
any of the actions in A. 

Proof: If there is a set of actions A applicable 
simultaneously at t-1 and achieving S, and P-S is not 
nanded with A at t-1, whereas no action aA deletes any of 
the propositions in P-S, then is it straightforward that all 
propositions in P can hold at t. Otherwise, they cannot. ■ 

Finally, let‟s define the notion of minimal nand 
relations in a more formal way: 

Definition 4. Any relation nandt(A,P) is minimal, if there 
is no other relation nandt'(A',P'), where A'A and P'P 
such that either of the following conditions hold: 
 |A'|+|P'|<|A|+|P| and t'≥t. 
 |A'|+|P'|=|A|+|P| and t'>t. 

For any nand relation that it is not minimal, we can say 
that it is subsumed by another nand relation. 
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Computing nands 

Before going into the details of the nands computing 
algorithm, we need some more definitions and propositions 
that concern their propagation. We assume that only 
minimal nands are retained.  

The following Proposition generalizes the well known 
monotonicity property of mutexes in Graphplan, i.e. 
mutexes monotonically decrease. In this case, nand 
relations only relax, i.e. they increase their order or 
disappear. 

Proposition 5. For any nand relation over a set of 
propositions P at level t of a planning graph, there exists at 
least one set of propositions SP that was nanded at levet 
t-1 of the planning graph. 

Proof: It is not possible for a set of propositions to be non-
nanded at some level t-1 of the planning graph, and being 
nanded at the next level t, since if there is a plan of t-1 
steps that achieves these propositions, then there is also a 
plan of t steps, with the last step not containing any action. 
So, either all propositions or some subset of them (even 
stronger condition) were nanded at the previous level. ■ 

 According to Proposition 5, new nand relations are 
created only when old nand relations break. Note that the 
initial state of a planning problem involves nand relations 
of order 1 for all propositions that are not members of I. 
So, each time a proposition is achieved for the first time at 
a planning graph level, new nand relations that involve this 
proposition might arise. Similarly, each time a higher-order 
nand relation breaks at some level, new nand relations of 
an even higher order than the broken one might arise, each 
one of them containing all the propositions of the broken 
relation. 

Proposition 6. A relation nandt(P) over a set of 
propositions P breaks at proposition level t+1, if there is an 
action a applicable at t that achieves some set of 
propositions S, such that S and SP and, furthermore: 
1. nandt(a, P-S) does not hold. 
2. (P-S)Dels(a)=  

Proof: We assumed that nand relations are minimal, so 
any subset of the involved entities can hold 
simultaneously. So, if the applicable action a achieves S at 
time t+1, we can assume that all propositions in P-S, which 
is a proper subset of P, could be true at t. Furthermore, the 
set P-S is not nanded with a at t (first condition), so it is 
possible to apply a while all propositions in P-S hold. 
Finally, a does not delete any of the propositions in P-S 
(second condition), so they can hold even after a‟s 
application. So, there is a plan of t+1 steps, with a being 
the single action of the last step, that achieves all 
propositions in P , so there is no nandt+1(P). ■ 

Proposition 6 is very useful, because it says that a 
single action is needed to break a nand, and this action just 
needs to achieve a single proposition of the nand, without 
neither deleting any one of the remaining propositions, nor 

being nanded with them.  

Definition 5. For a set of non-nanded actions A applicable 
simultaneously at level t, we denote with negatet+1(A) the 
minimal set of sets of propositions that cannot hold 
simultaneously at time t+1, provided that no action outside 
A has been applied at t. In this case, “minimal” refers to a 
set S of sets Si, such that there are not two sets Si,SjS with 
SiSj. 

Proposition 7. For a set of actions A applicable at t, 

negatet+1(A) consists of the following sets: 

1. {q} for every qDels(a) of every aA 

2. S, for any relation nandt(A,S), such that 

  
 Aa

aAddsS )(  

Proof: If actions of A are applied at t, then it is obvious 
that no delete effect of any of these actions can be true at 
t+1 (case 1). Furthermore, it no other action outside A has 
been applied at t, then any set of propositions S that are 
nanded with the set of actions A at t, should be added to 
negatet+1(A), provided that no action of A achieves any of 
them (in which case S can be true at t+1, because any 
subset of S could be true at t). We do not consider the case 
of any action of A deleting any of the propositions of S, 
since we assume that all actions‟ delete effects are also 
their preconditions, so none of them should appear at any 
set S, according to Proposition 2. ■ 

Example 1. Suppose that there are two non-nanded actions 
a and b applicable at t, with the following details: 
a={p,q},{p},{r} and b ={s},{},{u}. Suppose also that 
the following nands over propositions hold at t: 
nandt({p,s,v}) and nandt(s,r,y). According to Proposition 2, 
nandt({a},{s,v}) holds for a, so negatet+1({a}) = 
{{p},{s,v}). Similarly, nandt({b},{r,y}) and 
nandt({b},{p,v}) hold for b, so negatet+1({b})={{r,y}, 
{p,v}). Finally, nandt({a,b},{v}) and nandt({a,b},{r,y}) 
hold for the entire set of actions, so 
negatet+1({a,b})={{p},{v}}. Note that {r,y} is not included 
in  negatet+1({a,b}), since action a achieves r. 

The following two Propositions constitute the heart of the 

nand computing algorithm. Interesting sets of actions are 

defined in Definition 7 and explained further in the last 

subsection. 

Proposition 8. For any relation nandt(P) that breaks at 
level t+1 according to Proposition 6, for all interesting sets 
of non-nanded actions Ai at level t that can break this nand 
relation, create new nand relations at t+1 for the sets of 
propositions PN where 

 
i

it Anegate )(1N  

and both  and  refer to Cartesian products between sets. 
All new (existing) nand relations subsumed by existing 
(new) relations should be ignored (retracted).  
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Proof: Set N is a set consisting of other sets. Each set SN 
comprises one element (set) from negatet+1(Ai) for every 
interesting non-nanded set of actions Ai that break 
nandt(P). Assuming that at least one of the sets of actions 
Ai will apply at t, then at least one of the sets that form S 
will have a proposition that is false at t+1. Otherwise, if no 
set of actions Ai applies at t, nandt(P) won‟t break, so some 
proposition of P will be false at t+1. So, in any case and for 
any set RPN, either some proposition of P will be false, 
or some proposition of each SN will be false, so new 
nand relations for all sets of PN should be created. 
Minimality requirement imposes to keep only those nand 
relations (new or existing) that are not subsumed by others. 
■ 

Example 2. Continuing example 1, suppose that u is a 
newly achieved proposition, i.e. nandt({u}) breaks at t+1. 
Suppose that there are two interesting ways to achieve u, 
through the following alternative sets of actions: A1={b}, 
A2={a,b}. In example 1 we computed negatet+1({b}) and 
negatet+1({a,b}). So, their Cartesian product is:  

N= {{r,y,p}, {r,y,v}, {p,v}, {p,v}} 

By removing duplicates, N becomes  

N= {{r,y,p}, {r,y,v}, {p,v}} 

By taking the product PN, new nands are created for 
the sets: 

{u,r,y,p}, {u,r,y,v}, {u,p,v} 

Changing slightly the example, let‟s assume that u was 
not a firstly achieved proposition, but there was a relation 
nandt({u,z}) that broke at t+1 by the same set of sets of 
actions. In that case, nothing changes in the above analysis, 
except for the last step where the Cartesian product PN is 
computed. So, new nand relations would be created at t+1 
for the following sets of propositions: 

{u,z,r,y,p}, {u,z,r,y,v}, {u,z,p,v} 

Proposition 9. For any combination of relations nandt(Pi) 
that break at level t+1 according to Proposition 6, for all 
interesting sets of non-nanded actions Ai at level t that can 
break simultaneously all these nand relations, create new 
nand relations at t+1 for the sets of propositions PN 
where P is the union of all propositions in Pi‟s and 

 
i

it Anegate )(1N  

and both  and  refer to Cartesian products between sets. 
All new (existing) nand relations subsumed by existing 
(new) relations should be ignored (retracted). 

Proof: Proposition 9 generalizes Proposition 8 in that it 
considers simultaneously breaking nand relations. The 
only difference is that a set of nand relations break 
simultaneously at t+1, so the union of their propositions 
can be true simultaneously at that time. This can be 
achieved by various alternative sets of actions Ai, each one 
of them imposing that some sets of propositions cannot be 

true simultaneously after Ai‟s application, i.e. negatet+1(Ai). 
So, similar to the proof of Proposition 8, either some of the 
Ai‟s has been applied, so any set in N has a false 
proposition originating from negatet+1(Ai), or none of the 
Ai‟s has been applied, so some of the nand(Pi) cannot break 
at t+1. In any case, the sets of the Cartesian product PN 
will always include a false proposition at t+1. ■ 

Lemma 5. If N is an empty set, no new nand relations are 

created. 

N might be an empty set, if for some set of actions Ai, 

negatet+1(Ai)=. 

Lemma 6. If there is no set of actions Ai that break 

simultaneously all nandt(Pi) relations, then a nand relation 

over P exists at t+1.  

Definition 6. Given two sets of sets of propositions, R and 
S, we say that R is more relaxed than S, denoted with 
S  R, iff for any RR, there is some SS such that SR. 

For example, if R={{p,q}, {q,r}} and S={{p},{r}}, 
S  R holds since for each set of R there is a subset in S. 
The “relaxed” relation imposes a partial ordering over sets 
of actions, through their negatet sets. 

Definition 7. A set of non-nanded actions A at level t that 
break a set of nandt(Pi) relations is interesting iff there is 
no other set of non-nanded actions B at level t that break 
the same set of nand relations such that 
negatet+1({A}) negatet+1({B}). 

Proposition 10. Non-interesting sets of actions among 

those that break the same nand relation can be ignored.  

Proof: Suppose two sets of actions A and B, with 

R=negatet+1(A) and S=negatet+1(B), such that S  R. Any 

entry RS of the Cartesian product RS, with RR and 

SS, would be subsumed by the entry RSR=R, where 

SRS such that SRR, since R RS and we are interested 

only in minimal nand relations. ■ 

Lemma 7. If there is a set of actions A among those that 
break a nand, such that negatet+1(A)=, no other set of 
actions needs to be considered.  

So, we can now present the algorithm that computes all 
nand relations. The algorithm focuses on nand relations 
over sets of propositions; however nand relations over sets 
of actions or between sets of propositions and set of actions 
can be computed using Propositions 1 and 2.  

Algorithm 1. Computing nand relations over propositions. 

1. Create nand({p}) relations for all propositions pI. 
Let t=0 

2. While there are nand relations over G and the planning 

graph has not yet leveled off, repeat the following: 

a. Find the broken nand relations at level t+1, 

according to Proposition 6. Each one of them is 

replaced by a nandt relation. 
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b. For each combination of broken nand relations, 

apply Proposition 9 to create new nand relations. 

c. Let t=t+1. 
 

Step 1 concerns initialization, by recording all 

propositions that are not included in the initial state I as 

unary nands. Step 2 states the termination condition: Either 

achieving the goals G, or leveling off the planning graph. 

Achieving G means that there is no nand relation over any 

subset of G. Leveling off occurs if during the last iteration 

no nand relation has broken. 

Step 2a concerns breaking nand relations. According to 

Proposition 6, a single action is needed to break a nand 

relation, however we need to record all alternative actions 

that can be used for that purpose. Note that only newly 

applicable actions, i.e. actions that are firstly applied at the 

current planning graph level, can break unary nands. 

Finally, step 2b generates new nand relations. For each 

set of broken nands, all interesting sets of actions that can 

break them should be considered. As it is clear, this is the 

computationally most expensive step of the algorithm, so 

we will discuss it further in the section that concerns 

implementation details. 

Algorithm 1 computes the nand relations progressively, 

i.e. new relations are always nand, until they break. So, if 

the algorithm terminates before the planning graph levels 

off, there might remain some nand relations, although 

these relations would possibly break at subsequent levels.  

Extracting a plan 

If we are interested in finding a plan, then as soon as no 

nand exists among G, we can proceed with the plan 

extraction phase. This can be done in a backtracking free 

way by the following algorithm, which results in optimal 

parallel plans.  

Algorithm 2. Extracting a plan. 

1. Let G be initially equal to G. Let t be the first level of 

the planning graph, where all propositions in G appear 

without any nand between them. 

2. Execute repeatedly the following steps: 

a. If G I, display the plan and stop. 

b. Let Broken be the set of all nand relations over the 

propositions of G at level t-1. 

c. Find an interesting set of actions Ai non-nanded at t-

1, that break simultaneously all nand relations in 

Broken, such that no subset of G appears in 

negatet(Ai). 

d. Let G' be the union of the preconditions of the 

actions in Ai and of the subset of propositions of G 

that are not achieved by any action of Ai.  

e. Let Stept-1=Ai. Let t=t-1. Let G= G'. 
 

Algorithm 2 is a generalization of the plan extraction phase 
of Graphplan. Indeed, at each level a set of non-nanded 

actions that break the related nand relations of the previous 
level is selected (step 2c), with the requirement that no new 
nand relations over the current set of open goals is 
generated. The preconditions of the actions of Ai, as well as 
the not achieved open goals, constitute the new set of open 
goals for the previous level of the planning graph. 

Proposition 11. Provided that all nand relations have been 
computed up to level t, for any set of not nanded 
propositions G at planning graph level t, there is always a 
set of non-nanded actions Ai at t-1 such that that no subset 
of G appears in negatet(Ai). Furthermore, the set G' 
comprising the union of the preconditions of the actions in 
Ai and the subset of propositions of G that are not achieved 
by any action of Ai is nand-free at level t-1. 

Proof: Suppose that there is no nand relation over 
propositions of G at level t-1. In this case the proof is 
trivial, since Ai can simply be the empty set of actions.  

So, suppose that Broken is the non-empty set of subsets 
of G that are nanded at level t-1. Let G1G the subset of G 
comprising the union of all propositions appearing in nand 
relations of Broken. So, we need to find a set of actions Ai 
that can break all nand relations in Broken simultaneously. 
This set of actions should exist, since otherwise a nand 
relation over G1 should have been created at level t, 
according to Lemma 6. Furthermore, there should exist at 
least one option Ai that does not include any subset of the 
remaining propositions G-G1 in negatet(Ai), otherwise if all 
options Ai would include at least one SiG-G1 in 
negatet(Ai), then the Cartesian product would create, 
among other, a new nand relation over the set G1S, where 
S is the union of the various Si‟s . Clearly, G1S is a subset 
of G, so this is a contradiction since we assumed that no 
nand exists over G at t. 
 Since no subset of G appears in negatet(Ai), no nand 

can hold between preconditions of Ai and sets of non-

achieved propositions of G from actions of Ai. Indeed, if 

there was any nand relation between some preconditions of 

Ai and some propositions G2G that are not achieved by 

any action of Ai, then propositions in G2 should appear in 

negatet(Ai), which is a contradiction. Furthermore, no nand 

relation exists between sets of not achieved propositions of 

G, since we assumed that Ai breaks all nand relations 

between propositions of G, so Ai should achieve at least 

one proposition for each broken nand relation. So, there is 

no nand relation over the set comprising the preconditions 

of all actions of Ai and the not achieved propositions of G. 

If this set is referenced as G', we proved that by starting 

with a set of non-nanded propositions at level t, we can 

result with a new set of non-nanded propositions at level t-

1. ■ 

Lemma 8. Provided that all nand relations have been 

computed up to the level where G appears without any 

nand over its propositions, Algorithm 2 extracts a plan in a 

backtracking-free way. 
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 It is expected that for large size problems, it will be 

practically impossible to compute all nand relations. In that 

case, one can set a limit on the order of the nand relations 

computed by Algorithm 1, and ignore any relation above 

this limit. In such situations, the property of Algorithm 2 

for backtracking-free plan extraction vanishes. In that case, 

a common Graphplan-like search phase could be adopted, 

taking into account the higher order nand relations 

whenever sets of actions are selected at the various 

planning graph levels. 

Implementation Details 

The most time consuming step of Algorithm 1 is step 2b, 

which iterates over each set of broken nands, computing all 

the alternative interesting sets of actions capable of 

breaking all the nands of the set. So, managing to reduce 

either the number of sets of broken nands that are 

considered, or the number of alternative sets of actions that 

break each set of nands is of great value. 

 Concerning the sets of broken nands, we can adopt a 

progressive approach, starting from small sets of broken 

nands and going to larger ones. If for a set of broken nands 

there is no way to break all of them simultaneously (case 

of Lemma 6), there is no reason to examine any superset of 

them. This approach can easily be implemented using a 

depth-first search enumeration of the various subsets.  

As for the alternative sets of actions that can break 

simultaneously a set of broken nands, one can start with 

minimal sets consisting from at most one action for each 

broken nand of the set (it might happen that the same 

action breaks more than one nands of the set). These are 

the initial seeds. Then, each such set A can be enhanced 

progressively with new actions a, such that a is non-

nanded with A and achieves something of negatet+1(A) 

(obviously not the propositions deleted by A‟s actions), 

such that negatet+1(A)  negatet+1(A-a) does not hold. In 

order to avoid considering adding the same sets of 

additional actions in different order, we can post a 

lexicographic order on the new actions that are used to 

enhance the initial seeds. 

However, even if alternative sets of actions are 

computed as described in the previous paragraph, it might 

happen that non-interesting sets of actions arise, 

originating from different initial seeds. So a check among 

the alternative sets of actions should be performed, before 

proceeding with computing the Cartesian product. 

Finally, it seems that of great complexity is the 

computation of the Cartesian product. To be as efficient as 

possible, one should follow a divide-and-conquer 

approach, with the overall product being analyzed in 

subproducts that are computed recursively. After 

computing any such sub-product, deleting duplicates and 

subsumed sets of propositions greatly accelerates the 

overall process. This elimination is greatly facilitated by 

keeping the subproducts sorted based on the cardinality of 

their elements. 

Experimentation 

We implemented the proposed algorithms (computing 
nands and plan extraction) in Prolog. Particularly, we used 
the ECLiPSe Constraint Logic Programming Platform for 
running our experiments, although we haven‟t exploited 
any of the constraint programming features of the 
language. In our experiments we were not interested in 
measuring the solution time; this is an issue of future 
research, using a more optimized version of our code. 
However, we can report that in all experiments mentioned 
in this Section, solving time varied from a few seconds to a 
few minutes, with the contribution of the plan extraction 
phase to the total time being negligible

2
. All problems have 

been solved optimally in a backtracking free manner. 

 

 

Figure 1. A simple blocks world problem with five blocks. 

 

First we present an example from the blocks world 
problem and the version with the three operators (Figure 
1). Table 2 summarizes the nand relations found on this 
problem up to level 3, where a solution was found. The 
cnand refers to broken nands, whereas enand refers to the 
eternal nand relations. 

 

Order cnands enands Total 

2 28 134 162 

3 6 67 73 

4 0 2 2 

Totals 34 203 237 

Table 1. nands found for the five blocks problem up to goal 

achievement.  

 

If we continue running Algorithm 1 until the graph 
levels off, the following nands can be found: 

 

 

 

                                                           
2
 The code and the problem files used for the experimentation are 

available through contacting the authors. 
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Order cnands enands Total 

2 52 110 162 

3 113 20 133 

4 94 30 124 

5 0 24 24 

Totals 259 184 443 

Table 2. nands found for the five blocks problem up to level off.  

 
Examples of eternal nands of higher order are: 

nand({on(a,b), on(b,d), on(d,a)}) 
nand({on(a,b), on(b,d), on(d,e), on(e,a)}) 

nand({ on(a,b), on(b,c), on(c,d), on(d,e), on(e,a)}) 

whereas exampled of broken nands are the following: 

nand2({on(b,table), on(d,a), on(e,d)}) 
nand3({on(c,e), on(d,a), on(e,d)}) 

nand3({on(a,d), on(b,a), on(c,b), on(d,table)}) 

 We claim than broken nand relations are more 
interesting for plan extraction, since they are related to the 
specific problem instance. Indeed, eternal nand relations 
could be considered domain knowledge and be provided 
manually, whereas broken nand relations should always be 
computed from scratch for each problem. 

The second problem is strips-gripper-x-1 from the 
gripper domain of IPC-1. There are two rooms and a robot 
that can move between them. The robot has two grippers 
(left and right) that can carry balls. There are four balls in 
rooma that must be moved to roomb. The operators of the 
domain are move for the robot, pick and drop for each 
gripper. An optimal plan for this problem has 6 steps, 
where each triple of steps consists of two pick, one move 
and two drop actions. The graph levels off at level 8. Table 
2 presents the nands after the graph has leveled off. 

 

Order cnands enands Total 

2 12 45 57 

3 52 0 52 

4 52 0 52 

Totals 116 45 161 

Table 3. nands found for the gripper problem up to level off.  

 
Examples of nands found are the following:  

nand4({at(ball4,roomb),carry(ball2,right), 
carry(ball3,left)}) 

nand5({at_robby(roomb),at(ball4,roomb),  
carry(ball2, right), carry(ball3, left)}) 

Finally, we present the application of the proposed 
algorithms to the Flat Tire domain and specifically the 
problem fixit, which was also used in (Blum and Furst, 
1997). This problem concerns changing a tire using actions 
such as jacking the car up and down, loosen and tighten the 
nuts, opening and closing the car boot, fetching and putting 

away objects in the car boot etc. Table 4 summarizes the 
numbers of nands computed for the various orders after the 
planning graph leveled off. 

 

Order cnands enands Total 

2 38 28 66 

3 51 0 51 

4 28 0 28 

5 8 0 8 

Totals 125 28 153 

Table 4. nands found for the Flat Tire “fixit” problem.  

 
Examples of nands found are the following:  

nand9({closed(boot), in(jack,boot), in(wheel1,boot), 
in(wrench,boot), loose(nuts,hub)}) 

nand8({in(jack,boot), in(wheel1,boot),  
in(wrench,boot), loose(nuts, hub)}) 

nand11({closed(boot), in(wrench, boot),  
on(wheel2, hub), tight(nuts, hub)}) 

nand4({closed(boot), in(wrench, boot), loose(nuts, hub)}) 

nand2({free(hub), on_ground(hub)}) 

nand2({closed(boot), have(wrench)}) 

Although the set of examples is neither extensive nor 
diverse enough to extract general conclusions, we will risk 
stating a few of them based on, apart from the actual 
results, our intuition. In all three experiments, the number 
of cnands exceeds the number of enands, when the 
planning graph levels off. Although this is not a general 
rule, it is expected that this is the most common case. 
Table 1 is not an exception, since it does not concern a 
leveled-off graph. 

Another interesting observation concerns the numbers 
of total exclusion relations (sum of cnands and enands) 
when the planning graphs level off. In all three cases, the 
total number decreases with the order. Again, this is not a 
general rule but it seems that it is a situation common in 
many of the benchmark domains used in the planning 
literature. Our intuition suggest that breaking this rule, i.e., 
having more higher order exclusion relations than lower 
order ones, would indicate more complex problems.  

However, this analysis was not the goal of this paper; 
indeed, we were interested only in providing a complete 
and systematic algorithm to compute all higher order 
exclusion relations, with the examples being selected only 
for demonstration purposes. In a subsequent paper we will 
perform such an analysis based on experimental results 
from more domains and from several problems of various 
sizes from each domain. 
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Conclusions and Future Work 

In this paper we presented a systematic method to compute 
all higher order exclusion relations between the 
propositions of a planning problem. We denote each such 
relation over a set of propositions P with nandt(P), since 
the conjunction of propositions of P cannot be true at any 
planning graph level t't. We also defined nand relations 
over sets of actions, as well as over sets of actions and sets 
of propositions, and we proved several interesting 
properties for them. 
 Having computed all the nand relations for a problem, 
we presented an algorithm that extracts optimal parallel 
plans, and we proved that this algorithm is backtracking 
free. Finally, we implemented our algorithm and tested it 
on several planning problems from the literature. For each 
such problem we observed its behavior in terms of number 
of nand relations computed and their distribution over the 
various orders. As expected, all these problems were 
solved optimally and in a backtracking free manner. 
 Our next step concerns trying to optimize our code in 
terms of efficiency of the nand computing algorithm, using 
some form of intermediate results caching and by 
reiplementing it in a more efficient platform. Next, we plan 
to experiment with several relaxations as, e.g., setting 
limits on the order of the computed nands and analyzing 
the overall tradeoff between the time spent for nand 
computation and for plan extraction in different domains. 
The same analysis can be performed for state-space 
heuristic planners, using the nand relations for heuristic 
guidance; for graphplan-based planners when optimal 
parallel plans are requires; and for satisfiability planners, 
where nand relations constitute higher order constraints.  
 Another line of research would be to examine how the 
algorithm that computes the nands can take advantage of 
precomputed nand relations, that could be provided either 
by hand or could be obtained automatically through 
domain analysis. Finally, analyzing the order and the 
number of nand relations for various problems of the same 
domain and how they depend on the size of the problem 
might be an interesting indicator of the difficulty to solve 
problems from this domain. 
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