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Abstract. Simulation of crowd behaviours has long been an area of
active research due to its high impact on urban area design. Rather
recently, the problem has been tackled using agent based simulation
(ABMS), a modelling approach that offers a more natural and flex-
ible method for describing pedestrian behaviour. The current work,
concerns ABMS modelling of passengers boarding an underground
station using Population P Systems (PPS), a membrane computing
paradigm that allows formal definition of an agent based system. It is
argued that the expressive power of PPS allows modelling the simu-
lation under study, and an implementation of the model described is
provided in a well known agent simulation platform to further prove
its validity.

1 INTRODUCTION

Crowd behaviour simulation has long been recognised as a valuable
tool for evaluation of urban area design. Such simulations are consid-
ered more complex than those involving vehicle traffic mainly due to
the fact that pedestrian navigational patterns are more freely defined
and individuals are involved in more complex interactions both with
the environment and other pedestrians. This fact led naturally to the
introduction of agent based modelling (ABM) [4] along with other
techniques discussed in a later section (section 2). The former sup-
ports a number of essential characteristics for the task, such as ability
to host heterogeneous individuals in the simulation and emergence of
complex behavioural patterns.
P Systems [19] is a membrane computing paradigm that is inspired

by how living cells can perform computation. A P System is com-
posed of a hierarchical structure of membranes that can transform
objects through evolution rules that reside within them, and also ex-
change objects between them through communication rules. Mem-
branes can dissolve or divide thus changing the configuration of the
system during computation. A class of P Systems, Population P Sys-
tems (PPS) consist of cells within a bigger membrane (the environ-
ment). The cells are configured in a graph rather than a hierarchical
tree structure and are connected through bonds under specific dy-
namic conditions. In PPS with active cells [2], cells can die or di-
vide thus giving important features to PPS as a formal modelling
language.
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Prominent characteristics of PPS include:

• Non-deterministic communication between cells;
• Dynamic addition and removal of cells;
• Dynamic restructuring of the communications network; and fi-
nally

• Maximal and arbitrary parallelism, i.e. the ability to support selec-
tion of a maximal/arbitrary number of evolution rules with non-
deterministic selection of the rule that applies at each computation
step.

These features are particularly useful in MAS and this is the rea-
son why we suggest that PPS with active cells is one of the most
suitable formalisms for modelling the macro-level of biologically in-
spired MAS of a highly dynamic nature [13].
In this paper, we present how PPS with active cells, facilitates for-

mal modelling of MAS targeted to crowd simulation. The aim is
to demonstrate that PPS is a natural choice for this domain for de-
velopers who wish to formalise their system before proceeding to
the implementation or simulation. Formalisatation is necessary when
properties of the system at hand need to be proved. PPS provides an
elegant way to describe simple rules for agent movement in space,
multi-agent dynamic structure and organisation as well as exchange
of messages. Such simple mathematical notation can be refined to-
wards simulation and visualisation through an appropriate tool, in
this case NetLogo.
The rest of the paper is structured as follows: Section 2 provides

an overview of common approaches to crowd simulation; Section 3
presents the formal definition of PPS with active cells while Section
4 discusses the reasons why they are appropriate for MASmodelling;
Section 5 presents the case study description together with indicative
parts of the the PPS model, and Section 6 the derived NetLogo simu-
lation; Section 7, finally, concludes the paper an discusses directions
of further work.

2 CROWD SIMULATION

Pedestrian simulation has long been the topic of active research,
due to its importance to urban design, as for instance evaluating a
building design in case of an evacuation. There is a vast number of
research results reported in the literature, that follow different ap-
proaches with respect to the method used and most importantly the
granularity of the simulation, also referred to as scale.
A lot of research deals with the problem following a “macro-

scopic” approach, i.e. it uses for example flow dynamics as in [11]
and [10] in order to assess designs and simulate behavioural patterns
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of pedestrians moving in an area of study. These models describe
crowd behaviour as a set of partial differential equations and are most
useful in densely populated environments.
Social force models, originally introduced in [9], consider pedes-

trians exposed to “force field” generated by its own intentions, other
pedestrians and points of attraction. Models in this category have
been thoroughly studied and in some cases combined with other ap-
proaches, as for instance agent based [14], to successfully model
crowd behaviour. Social force models adopt the “microscopic” ap-
proach to crowd simulation, according to which the overall behaviour
is emerging as the result of interactions of individual entities.
Cellular automata [3],[21] also fall under the same category, and

describe the world as a grid of cells while behaviour is determined
by a set of simple local rules that update the state of each cell, based
on the state of its neighbouring cells. Gas lattice models consider
pedestrians to be “particles” moving on a grid with a set of probabil-
ity rules determining their next position on that grid, as for instance
in [7] and [8].
Finally, agent based modelling (ABM) has also been employed to

tackle the problem. ABM has a number of advantages [4] in the sense
that it allows emergent phenomena to manifest, it is flexible and al-
lows a natural description of the model. For instance in [6] ABM are
used to model pedestrian behaviour and cellular automata to model
the environment. A similar approach is used in [22] to assess design
choices in cases of emergency evacuation in a metro station. Bandini
et al., employ the situated cellular agent model [1] to model pedestri-
ans in an underground train station that exhibit both cooperative and
competitive behaviour, i.e passengers boarding and descending the
train wagon.
The list of references provided above is by no means complete;

there is a significant amount of research work and tools addressing
the problem and the reader should refer to [17] and [23] for a more
in depth review and assessment of models used in crowd simulation.

3 POPULATION P SYSTEMS WITH ACTIVE
CELLS

3.1 Formal Definition of PPS with active cells
A Population P System with Active Cells [2] is defined as:
PPS = (V, K, C1, C2, . . . , Cn, wE , γ, α, R, O) such that:

• V is the set of all objects within the system, including those of the
environment;

• K is the set of the different types of cells in the system (each cell
has an associated class/type);

• Ci, 1 ≤ i ≤ n are the n cells in the system;
• wE is a multiset over V containing the objects initially assigned
to the environment;

• γ = (N,A) is the undirected graph representing the initial struc-
ture of the system, where: N = {1, 2, . . . n}, and A ⊆ N ×N ;

• α is a finite set of bond making rules;
• R = Re ∪Rc is the set of all evolution and communication rules;
• O is a partial order over the set of all rules R.

3.2 Objects in Cells and Environment
In the above definition, an object has its normal mathematical se-
mantics, i.e. a symbol. For the purposes of this work however an
object is represented as an attribute : value pair and therefore
V = {(a : υ) | a ∈ Attributes, υ ∈ D} where Attributes is
a set of attributes/labels andD stands for the domain set of a. In PPS

that deal with spatial properties, there is also a special kind of object
(Πi : πi) ∈ V for each cell, denoting the ith cell’s position, with
values πi ∈ N0 ×N0 and a label Πi that stands for position. In [18],
a special class of PPS is defined, namely Spatial PPS or spPPS.

3.3 Cells and Types
A cell is defined as a tuple C = (w, t) where:

• w is the multiset of objects over V that are contained by the cell,
and

• t ∈ K is the type of the cell.

Practically, this means that cells are classified in different types
containing different objects and different evolution and communica-
tion rules.

3.4 Bonds between Cells
The bond making rules in α are of the form (t, (x : a); (y : b), p),
where (x : a), (y : b) ∈ V and t, p ∈ K. This rules states that in the
presence of (x : a) in a cell of type t and (y : b) in a cell of type p,
the two cells are joined, i.e. they can exchange objects. Bond making
rules are responsible for constructing the undirected graph γ, which
represents the communication structure of the P System.

3.5 Evolution Rules
Re is the finite set of cell evolution rules, that is, rewrite rules which
given the presence of certain object transform a cell by introducing
new objects or communicating objects to other cells or transforming
the type of a cell etc. Evolution rules determine the computation of
the system and are of various types (in the following t and p are the
types of the cell that these rules refer to):

• Transformation rules: ((x : a) → (y : b))t, that is, an object
(x : a) becomes (y : b);

• Differentiation rules: ((x : a))t → ((y : b))p, that is, in the
presence of an object (x : a) the cell of type t is transformed into
a cell of type p containing the object (y : b);

• Division rules: ((x : a))t → ((y : b))t((z : c))t, that is, in the
presence of an object (x : a) the cell is divided into two cells of
the same type. The two cells contain the objects (y : b) and (z : c)
respectively;

• Death rules: ((x : a))t → †, that is, in the presence of an object
(x : a) the cell disappears from the system.

Evolution rules are shown diagrammatically in Fig. 1. The outer
membrane in each diagram represents the environment whereas the
inner membranes are the cells.

3.6 Communication Rules
Communication rules are responsible for importing/exporting ob-
jects from/to the environment as well as importing/exporting objects
from/to other cells. Communication rules Rc are of the form (in the
following t is the type of the cell that these rules refer to):

• ((x : a); (y : b), enter)t, that is, in the presence of an object
(x : a) the object (y : b) is imported from the environment;

• ((x : a); (y : b), entercopy)t that is, in the presence of an object
(x : a) a copy of the object (y : b) is imported from the environ-
ment;

ECAI 2012 workshop Intelligent Agents in Urban Simulation and Smart Cities 6

V. Corruble et. al., ed. Montpellier, France, August 28, 2012 



Figure 1. Evolution Rules in Population P systems with active cells.

• ((x : a); (y : b), in)t, that is, in the presence of an object (x : a)
the object (y : b) is imported non-deterministically from a neigh
boring cell;

• ((x : a), exit)t, that is, when present, the object (x : a) is ex-
ported to the environment.

Communication rules are also shown diagrammatically in Fig. 2.

Figure 2. Communication Rules in Population P systems with active cells.

3.7 Computation
The computations step in a cell of a PPS consists of firstly applying
in a non-deterministic order all the evolution rules that are triggered,
and afterwards applying in a non-deterministic order the triggered
communication rules. Since, however, this does not always serve the
purposes of ABM, the partial order O augments the model, imposing

a priority to the rules so that they applied in an order that fits the
model at hand, e.g. ...ri � rj .... The computation in each cell is
performed independently of other cells, as implied by the maximal
and arbitrary parallelism characteristic of PPS.

4 POPULATION P SYSTEMS FOR
MODELLING OF MAS

Formal methods such as PPS are particularly suited to modelling
MAS [12]. Individual agents:

• perceive their environment by receiving stimuli as input;
• receive messages from other agents;
• revise their beliefs based on both the percepts as well as the infor-
mation encoded in the received messages;

• react based on a specific set individual behavioural rules;
• engage in a deliberation process to decide on the next action;
• compile and send messages to other agents;
• act, with the effects of their action appearing in the environment.

Not all the above are present in every agent. For example, reactive
agents do not deliberate, while “smarter” proactive agents do. Also,
communication between simple biological agents is rather primitive
and mostly done through the environment, in contrast to more elabo-
rated direct communication that may follow a strict protocol. There-
fore, in order to create a model of an agent, one would require non-
trivial data structures, means of encoding rules and behaviour, rep-
resentation of the internal state of the agent, etc. It is evident that
PPS can provide such attributes in an agent (cell) through the set of
objects and the set of evolution rules.
In a MAS, each agent operates in parallel with other agents, and

a mode of interaction determines the way in which agents exchange
messages. Agents have roles and are organised in a way that the com-
munication flow is facilitated. The features of PPS are well suited for
all the above; maximal/arbitrary parallelism, types of cells and bond
making rules.
At MAS level, formal modelling would require ways to deal with

exchange of messages between agents, a method for expressing the
asynchronous computation of individuals, the addition and removal
of agent instances “on the fly” and means for structuring and restruc-
turing the organisation “on the fly” (structure mutation). Again, it
is evident that PPS can provide such attributes for modelling MAS
through communication rules, division and death rules as well as
bond making rules.
Finally, in the current context of crowd behaviour, a MAS also

requires special handling of spatial characteristics of agents, some-
thing that PPS can neatly provide. To summarise, PPS, through their
characteristics, seems to offer an interesting and elegant way to for-
mally model the features of spatial MAS such as those met in crowd
behaviour.

5 CASE STUDY: METRO STATION CROWD
BEHAVIOUR

The case study employed to demonstrate the application of the PPS
approach concerns the simulation of underground metro station, as
the latter is discussed in [1]. The scenario concerns a common every-
day situation where passengers enter an underground station and try
to board a wagon. The experimental setting includes an entrance area,
where passengers initially entering the station are located, the plat-
form, the wagon, the door area, an intermediate target for the passen-
gers to reach before completing their boarding, and the seats (Fig. 3).
Briefly, each passenger:
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• Upon entering the station, selects one wagon door and moves to-
wards it.

• The passenger then waits in the platform area for the doors to
open.

• When the doors open the passenger moves to the door area in order
to board the wagon.

• The passenger completes the boarding and is now located in the
wagon.

• If the passengers perceives an empty seat they move towards it to
get seated.

Figure 3. Areas in the underground simulation scenario.

For the experimental setting described above, we consider space
to be discrete, divided to a grid, where each grid position can accom-
modate a single passenger. The latter move from a position to the
next instantly. This is in accordance with almost all discrete models
of pedestrian simulation reported in section 2. All the assumptions
stated here are going to be reflected in the PPS model described in
the following.
For the purposes of modelling the given scenario three distinct cell

types are required. Cells of the first type p ∈ K will be used to model
the individual passengers. Each passenger cell should include objects
that correspond to the area it is positioned, and beliefs, such as:

(area : platformWaiting)(Π : (x, y))(goal : door1)

indicating that the particular passenger is currently waiting at the
platform, in a particular position (x, y) with the goal of going to-
wards the first door when the doors open.
Given a passenger in the above state, for them to perceive the doors

have opened we need a communication rule that will retrieve the in-
formation (object (doors : open)) from the environment:

((area : platformWaiting); (doors : open), entercopy)p
For the agent to move towards its intended direction, i.e. door1 as

specified by the goal object, the neighbouring environment needs to
be perceived for empty positions:

((Π: (x, y))(goal:door1);

(door1: (nx, ny))(empty: (nx,ny)), enter)p

such that (nx, ny) is a the neighbouring position that is closer or
belonging to door1.
After an empty position has been perceived, the passenger moves

to this position (transformation rule), updating its environment to in-
form that its previous position is now empty (communication rule):

((Π: (x, y))(empty: (nx, ny)) → (empty: (x, y))(Π: (nx, ny)))p

((empty: (x, y)), exit)p

Perceiving that it has arrived to the door area (communication
rule), the agent updates its area (transformation rule):
((Π : (x, y))(goal : door1); (door1 : (x, y)), entercopy)p

((Π: (x, y))(area:platformWaiting)(goal:door1)(door1: (x, y))
→ (Π : (x, y))(area : door1)(goal : wagon))p

Passengers are removed from the system when they are in the en-
trance area exiting the station:
((area:entranceExiting)(Π: (x, y))(entrance: (x, y)) → †)p

A second type of cell is required to model the arrival of new pas-
sengers at the entrance of the platform. The idea is that we have a
generator cell (type g ∈ K) positioned at the entrance, that only con-
tains one divide object and two division rules. One rule will actually
generate a new passenger at the entrance area whereas the other will
be a “fake” division rule that does not generate a passenger. In this
manner one of the two rules will be non-deterministically applied in
each computation step possibly generating a new passenger. The two
rules are:

((divide) → (divide)(ε))g, and
((divide) → (divide)

((state:entrance)(goal:dock)(Π: (x, y)))p)g

where (x, y) is any position such that in the environment there are
the objects (entrance : (x, y)) and (empty : (x, y)).
Finally, a third type of cells is required, to be responsible for the

opening and closing of doors (type d ∈ K). One cell of the given
type is necessary so that at specific intervals it expels to the environ-
ment the (doors : open) and (doors : close) objects with the use
of two communication rules. To model the time intervals a transfor-
mation rule is used, which produces a copy of a tick object at every
step. Assuming, for example that doors have to open in 30 time units
the rules would be:

(tick → tick2)d, increasing the time (superscript denotes the multi-
plicity of the object in the multiset)

(tick30 → tick(doors : open))d, generating the (doors : open)
object and reseting the clock , and

((doors : open); (doors : open), exit)d, for expelling to the envi-
ronment so that the passengers are informed. A similar process takes
place for closing the doors.

6 FROM FORMAL MODELLING TO
SIMULATION

In the recent years a large number of agent simulation platforms have
been proposed in the literature [15], differing in the programming
language used, development environment, documentation, etc. Prob-
ably, Repast [16] and NetLogo [20] are the most widely adopted, and
better supported platforms with a large community of active users.
Out of the two, NetLogo was selected as the platform of choice for
implementing the PPS model of the underground station, mainly due
to its unparalleled simplicity in developing and maintaining simula-
tion experiments.
NetLogo is an agent simulation platform, aiming at the simula-

tion of complex social and biological phenomena, involving a large
number of agents. The platform offers a complete simulation devel-
opment environment, supporting the creation of a large number of
agents (turtles) “living” in a 2D or 3D grid (patches), whose be-
haviour is controlled by a domain specific language. The platform
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Figure 4. The underground station simulation scenario in NetLogo. Note that a number of controls allows modification of experiment parameters.

also supports easy GUI creation, thus greatly facilitating the devel-
opment of a simulation experiment. It should be noted that it has been
used as a tool for ABMS in a large number of cases, and in pedestrian
simulation as well [5], [24]. Figure 4 depicts the NetLogo simulation
environment of the case study of the paper.
Supporting direct execution of PPS defined agents in NetLogo

presents a number of problems. Rules, as described in section 5, re-
quire support for one-way pattern matching (rewrite rules), a feature
that is difficult to support in the functional-like domain specific lan-
guage of NetLogo. Additionally, the declarative nature of the agent
rule base presents a few difficulties when encoded in this program-
ming paradigm. Therefore, we have chosen to implement the agent
“PPS engine” in an NetLogo4 extension, NetPrologo, that allows ex-
ecution of Prolog code from the simulation platform.
This greatly facilitated the development of our agent model, since

after the initialisation of the experiment, all relevant objects regard-
ing the environment and the agents are asserted as Prolog facts, in
the NetPrologo engine. During simulation execution each agent runs
the engine and updates its position and state according to the results
of the execution.
Figure 5 presents a snapshot of the simulation showing agents

boarding the metro wagon. Although in the figure all passengers are
shown white, in the actual simulation, they are color coded depend-
ing on their state (seated, boarding etc.). In Fig. 6 all passengers have
successfully boarded the metro wagon and some have managed to
find a place to seat.
Although the NetPrologo extension offers an easy and elegant way

to implement the PPS model, we are considering the option of auto-

4 NetPrologo is available at http://www.cs.us.es/˜fsancho/NetProLogo/

Figure 5. Passengers (shown in white) Boarding the Wagon.
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Figure 6. All Passengers on Board. Note that some passengers are seated,
occupying the corresponding space in the wagon.

matically compiling rules to the NetLogo programming language,
mainly for efficiency reasons, since it will reduce the overhead of
updating the Prolog interpreter in each cycle.

7 CONCLUSIONS AND FURTHER WORK

With this work we aim at demonstrating how PPS with active cells
is a suitable formalism for modelling MAS for the purposes of sim-
ulating crowd behaviour. We have used metro station boarding as an
example to illustrate that PPS provide the necessary constructs both
for modelling individual agents, with the use of objects that represent
the agent’s beliefs and evolution rules that update these beliefs, as
well as for dealing with the structure reconfigurations that take place
in such dynamic systems, with the use of bond-making, division and
death rules. Additionally, although not explicitly demonstrated in the
presented case study, PPS also allow the communication between
agents through objects’ exchange.
The initial NetLogo simulation described in this paper, acts as a

proof of concept in using the PPS formalism to such a complex sce-
nario. We are considering further developing tools and techniques
for automatic translation of PPS specifications to NetLogo and pos-
sibly other platforms such as Repast, considering further issues such
as simulation scalability, possibly through parallel/distributed exe-
cution. Additionally, we are considering the development of more
complex pedestrian behaviours, as for example in panic situations in
evacuation scenarios, where object exchange mentioned above could
provide a flexible modelling approach.
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