Eng Int Syst (2012) 1: 65-75 1 1
© 2012 CRL Publishing Ltd Englneerlng

Intelligent Systems

Agent assisted paper collection for
recycling

Nikolaos Bezirgiannis' and Ilias Sakellariou®

1Department of Inf. and Comp. Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.
E-mail:n.bezirgiannis@students.uu.nl

2Department of Applied Informatics, University of Macedonia, 156 Egnatia Str. 54124 Thessaloniki, Greece.
E-mail: iliass@uom.gr

Recycling has been gaining ground, thanks to the recent progress made in the related technology. However, a limiting factor
to its wide adoption, is the lack of modern tools for managing the collection of recyclable resources. In this paper, we present
EcoTruck, a management system for the collection of recyclable paper products. EcoTruck is modelled as a multi-agent system and
its implementation employs Erlang, a distribution-oriented declarative language. The system aims to automate communication and
cooperation of parties involved in the collection process, as well as optimise vehicle routing. The latter have the effect of minimising
vehicle travel distances and subsequently lowering transportation costs. By speeding up the overall recycling process, the system

could increase the service throughput, eventually introducing recycling methods to a larger audience.

Keywords: Agent Systems, Contract-Net, Functional Logic Programming, Erlang

1. INTRODUCTION

The term Recycling refers to the reinsertion of used mate-
rials to the production cycle. It is an important component
of the well-known 3R hierarchy “Reduce, Reuse, Recycle”.
The initial phase of the recycling process is the collection of
the recycled materials from consumers. In a sense, this is
a kind of a transportation problem, i.e. transporting items
from geographically distributed locations to a central loca-
tion (material recovery facilities) in a highly dynamic man-
ner. Due to the problem’s dynamic nature, we consider it to
be an excellent area of application for multi-agent technology
[1]. Although the latter has been around for many years, still

vol 20 no 1 March 2012

presents a number of excellent opportunities for its application
in new domains. In the light of new technological advances in
the areas of telecommunications, portable computing devices
and development platforms, such applications can really “go”
mainstream.

Paper recycling has gain significant attention due to a) the
large quantities of paper used in everyday tasks (offices, pack-
aging), and b) possible reductions in energy consumption
and landfill waste. Currently, municipal authorities employ
a rather outdated procedure for the collection of recyclable
large packaging cartons and other paper waste. This pro-
cedure involves telephone communication and manual truck
assignment for pick up services. The drawbacks of such a

65

process are rather obvious: delays in the collection process,
unoptimised use of resources, and can potentially lead to a
low acceptance of recycling practise and thus to failure of the
whole process.

EcoTruck [2] aims to address the above issues, replacing the
current “manual” collection process by a multi-agent system.
This offers a number of advantages, such as distributed coor-
dination of collection services, speed, robustness, absence of
a central point of control and scalability. The system proposed
is implemented entirely in Erlang[3], a concurrency-oriented
declarative language. While Erlang is not widely adopted
by the agent community, it is quite heavily used in industry
to develop mission critical server products and soft real-time
systems. The reasons for adopting Erlang as the platform
of choice were its strength in fault-tolerance and distributed
programming, aspects critical to the EcoTruck application.

Thus, the aim of this paper is twofold: firstly, the paper
supports that the application of multi-agent technology can
improve the recyclable paper collection process; secondly, we
argue that the development of such multi-agent systems can
be easily done in Erlang and prove the latter by presenting the
implementation of our system in the language. The present
article extends previous work on the EcoTruck system [2] in
two ways. The first extension concerns an implementation of
a more intelligent decomposition of failed task delegations, in
order to lead to an increased performance of the overall sys-
tem. Under the new approach agents decompose a unsatisfied
paper recycling request into two smaller ones of appropriate
size taking into consideration information from truck agents
instead of simply dividing the original request in two requests
of equal size. The second concerns an experimental evaluation
of both the original system and the improvement mentioned
above in a cloud computing environment, in order to assess
its overall performance. These extensions are reported in sec-
tions 6 and 7 of the present article.

The rest of the article is organised as follows. Section 2
presents the related work on the agent based paper recycling
and agent development. The problem addressed is introduced
in more detail in section 3. Section 4 presents the system’s
architecture and cooperation protocol, i.e. the Contract-net
protocol. Section 5 describes the implementation of the sys-
tem in Erlang while section 6 presents experimental results in
a cloud computing platform. The section that follows (section
7) presents an improvement of the initial system. Finally, sec-
tion 8 concludes the paper and presents potential extensions
of the current system.

2. RELATED WORK

The MAS approach has been applied to recy-
cling/environmental processes in various contexts. For
instance, the EU funded project E-MULT [4] aimed at
developing a dynamic network of SMEs based on multi-agent
solutions for the recycling of end-of-life vehicles, a process
that is reported to be particularly complex. In [5] a simulation
of an animal waste management system between producers
and potential consumers (farms) is presented that allows to
test different management scenarios.

66

AGENT ASSISTED PAPER COLLECTION FOR RECYCLING

In [6] authors employ multi-agent simulation coupled with
a GIS to assist decision making in solid waste collection in
urban areas. Although the approach concerned truck routing,
it was in a completely different context than the one described
in the present paper: the former aimed at validating alterna-
tive scenarios by multi-agent modelling in the waste collection
process, while the EcoTruck system aims at dynamically cre-
ating truck paths based on real time user requests.

The problem of efficiently collecting recyclable material
from customers is in essence a dynamic transportation prob-
lem, although simpler in the sense that the destination loca-
tion is fixed. A number of approaches in the literature have
attacked the same problem, such as [7], where an extended
contract net protocol (ECNP) is used to solve a transportation
logistics problem. The ECNP protocol introduces new steps
in the original contract net (temporal grant/reject and defini-
tive grant/reject) and allows to dynamically decompose large
demands (contracts). In [8] authors propose a new protocol
the “provisional agreement protocol”, where agents under the
protocol are committed to bids sent only when they are (pro-
visionally) granted the award. Thus, agents are allowed to
participate simultaneously in multiple task announcements.
The PAP protocol has been applied together with open dis-
tributed planning to the simulation of a real logistics data of
a European company. Since the problem EcoTruck is dealing
with is less complex than the dynamic transportation prob-
lem, EcoTruck follows a simpler approach: it allows agents
to place multiple bids and allows multiple task announcements
for an unserviced request if the bidder has already commit-
ted to another “contract” by the time it receives the award, as
described in section 4.1.

Finally, the Erlang language has been used to implement
software agents with quite promising results. In [9] authors
proposed the agent platform eXAT and support that it offers
a number of benefits compared to the well-known JADE [10]
platform, such as robustness and fault tolerance, more natu-
ral integration of the necessary components to implement such
systems (FSM support and production rules components). Ad-
ditionally, in [11] authors argue for the suitability of Erlang
language compared to JAVA based platforms.

3. RECYCLABLE PAPER COLLECTION

While recycling technology has made significant progress,
the collection of the recyclable materials still relies on old-
fashion practises. Currently, municipal offices responsible
for the paper collection and management operations act as
mediators between companies (i.e. large companies, shop-
ping centres, supermarkets) and dedicated truck vehicles for
transporting paper from the former to the materials recovery
facilities (MRFs). Typically, offices employ a rather outdated
non-automated procedure that relies on telephone communi-
cation: a) the company contacts the office and places a re-
quest, b) the municipal office checks the current truck sched-
ules and finds an appropriate truck for the task c) the truck
is immediately informed of the new task and adds it to its
current schedule. Of course the procedure described is an
ideal “manual” operation. Usually, municipal offices collect
requests and construct the next-day trucks’ schedule, with an

Engineering Intelligent Systems

N. BEZIRGIANNIS AND 1. SAKELLARIOU

obvious impact of such delay both to the urban environment
and acceptance of recycling practices by customers.

The “ideal” manual procedure presents quite a few disad-
vantages, mainly due to the centralised approach followed,
that imposes a serious bottleneck to the system. It can be
easily seen that:

¢ Efficient resource allocation (trucks to collection tasks)
cannot be easily achieved, since the municipal office is
not aware of the current status or location of the trucks.

* Communication is slow, resulting to a low number of
handled requests.

¢ Trucks do not coordinate their actions and thus resources
are underexploited in most of the cases.

* Finally, customers have very little information on the
progress of their request and this has an impact on the
adoption of recycling by a wider community of profes-
sionals.

The agent based approach proposed in this article attempts
to resolve most of the above problems. Imposing a distributed
cooperation model between interested parties alleviates the
need for a central coordination office, allows trucks to form
their daily schedule dynamically based on their current state
(e.g. load, distance from client and other commitments), and
increases the number of requests serviced. Finally, since the
system’s status is available, customers have access to infor-
mation regarding the progress of their request.

The case of serving recycling requests fulfils three out of
four criteria for employing agent based systems stated in [12],
namely the existence of open, highly dynamic environment,
geographic distribution of data and control and agents being
a natural metaphor of the system.

* The environment is highly dynamic and open as the num-
ber of customers, their location and the size of their re-
cycling requests varies from day to day and is definitely
not known at design time.

* Geographic distribution of data is present in the system
since truck agents hold dataregarding their current capac-
ity, location and plan and customer agents maintain data
regarding their requests and location. Therefore adopt-
ing an agent oriented approach removes the necessity of
collecting all the above in a single point and dealing with
the task in a centralized manner.

* Decisions regarding system’s operation can be based on
local data (state) of each agent, thus favouring a solution
that supports autonomy, a central characteristic of agent
based systems.

» The organizational characteristics of the overall system,
i.e. independent customers that require a single truck to
service their request, leads to a natural modelling of the
problem as a set of interacting active agents, that form
organizational links depending on the current state of
the world. The latter also allows to deal gracefully with
abnormal situations, as for instance a malfunction of a
truck that has already committed to a recycling request.

vol 20 no 1 March 2012

Finally,“the interplay between system components can be nat-
urally viewed in terms of social interactions” [13] since cus-
tomer and truck agents form organizational links using a high
level message exchange using the well known Contract Net
protocol.

4. ECOTRUCK AGENTS

A natural modelling of the problem is to map each interested
party in the process to an agent. Thus, EcoTruck is conceived
as a multi-agent system that consists of two types of agents:
Customer Agents, each representing a company in the system
and Truck Agents, each representing a dedicated collection
vehicle, that is responsible to manage the latter’s everyday
schedule.

The Customer agent has the goal to satisfy “its” user’s re-
cycling request by allocating the latter to an available truck.
Thus, a customer agent receives input, i.e. the paper amount
the company wishes to recycle, and initiates a cooperation
protocol to find the best possible truck to handle the request.
The best candidate truck is considered to be the one that can
service the request in the shortest attainable amount of time.
Furthermore, the customer agent is responsible for monitor-
ing the entire process, provide a user friendly display of the
progress of the user request, as well as take action in the light
of possible failures.

A Truck agent is modelled as a software agent mounted on
truck vehicles that operates as an assistant to the driver. The
agent has the goal of collecting as much recyclable material
as possible, thus tries to maximise the number of Customer
agent requests it can service. Each incoming request is eval-
uated based on the current available capacity of the truck, its
geographical position and the tasks (paper collections) it has
already committed to, i.e. its plan. Once a new collection task
is assigned to the agent through the cooperation protocol dis-
cussed later, it is added to the truck’s plan. Each Truck agent
maintains its own plan, that is a queue of collection tasks it
intends to execute. Additionally, the truck agent proactively
adds a “paper unloading” task to the plan upon detecting that
its current capacity reaches a lower limit. Finally, by pro-
cessing real-time routing information, the agent “guides” the
driver inside the city, much like a GPS navigation system,
reducing total travel distances and response time.

The operation of the system is cooperative, in the sense that
all involved parties work together in order to fulfil the overall
goal of increasing the amount of recyclable material collected
during a working day. Consequently, the interaction protocol
that was selected for EcoTruck system was the Contract-Net
protocol, as discussed in the subsection that follows.

4.1 Agent Cooperation

The Contract-Net protocol (CNP) [14, 15], is probably the
most well-known and mostly implemented task sharing pro-
tocol in distributed problem solving. It offers an elegant yet
simple way of task sharing within a group of agents and it was
considered to be suitable for the case of the EcoTruck system.

In the latter, Customer agents play the role of managers
while Truck agents act as contractors according to the proto-

67

col’s terminology. The overall process is the following:

1. A Customer agent initiates a CNP protocol by announc-
ing the paper collection task to truck agents. This “call
for proposals” (CFP) contains information regarding the
geographical location of company and the paper quantity
for collection. The latter plays the role of the eligibility
criterion in the protocol, i.e. truck agents must make
sure that they can indeed service the request.

2. Truck agents evaluate the CFP and decide on their eli-
gibility for the task. If they can collect the paper load
reported in the CFP, they reply with a bid that contains
the estimated time of servicing (ETS) the request; the lat-
ter is the sole criterion on which Customer agents decide
on the agent to assign the task to. Naturally, Trucks can
also refuse a request, if they cannot handle it, are cur-
rently full or for any other reason, by responding with an
appropriate message.

3. The Customer agent receives the bids, processes
them, decides on the best truck to assign the task,
and broadcasts the corresponding messages (accept-
proposal/refuse-proposal) to all interested truck agents.

4. The winner truck adds the task to its current plan. Upon
arriving at the designated location, it will collect the pa-
per, mark the job as finished and inform the correspond-
ing Customer agent.

Obviously, there is always the risk that the Customer agent
receives no bids [14]. This can occur when the paper quantity
in the CFP exceeds either:

a. the current capacity of any truck in the system,
b. the maximum capacity of even the largest truck.

Although different in nature, both cases are treated uni-
formly: the Customer Agent decides to decompose the orig-
inal request into two smaller ones of equal size and handle
each new request separately, by initiating a different CNET
protocol on each one. While the decision is obvious in the
case that the CFP quantity exceeds the maximum capacity
of all trucks, it requires some explanation in case (a) above.
Since for trucks to regain their capacity they need to unload
their cargo in Material Recovery Facility (MRF), a rather time
consuming process, it was considered better in terms of ser-
vice time reduction to allow the decomposition of the task,
instead of the Customer agent waiting for some truck with the
appropriate capacity to appear in the community. However,
such a decomposition leads inevitably to an increased number
of messages exchanged between the agents, with an impact to
the overall efficiency of the system.

Another issue, that is also present in the original CNP spec-
ification, regards whether to allow contractors to participate
in multiple call for proposals [16, 7]. In the EcoTruck sys-
tem such cases would naturally occur, since multiple com-
panies operate in the system’s environment that might place
simultaneous requests. Therefore, it was decided that when
a “winner” truck is awarded a contract (accept-proposal mes-
sage) then it checks it against its current schedule, since the
latter can be different than the one the agent had during the

68

AGENT ASSISTED PAPER COLLECTION FOR RECYCLING

bidding phase. If the task can be added in the schedule with
no differences in the ETS that appeared in the initial bid, then
it is simply added in the list of tasks the truck has to service.
However, any differences in servicing time lead to a failure
message being send to the customer agent. Obviously, the lat-
ter has to re-initiate a CNP protocol on the user request once
more. Although, this approach is not very sophisticated like
the one described in [16], and certainly leaves plenty of room
for improvements, it was considered to be adequate for the
specific case.

S. IMPLEMENTING ECOTRUCK

Erlang [17, 18], is a concurrent declarative language aiming
at the development of large distributed systems with soft real-
time constraints [3]. The language offers dynamic typing,
a single assignment variable binding scheme and automatic
garbage collection so as to facilitate program development.
Support for concurrency is achieved through process based
programming and asynchronous message passing communi-
cation. Erlang follows the now popular “execution through
virtual machine” model and a distributed system is composed
of a number of different Erlang nodes running in one or more
computers, each node being a unique instance of a virtual
machine.

A useful extension to the standard Erlang language is the
Open Telecom Platform (OTP)[19], that is a set of libraries
and tools to facilitate the design and development of large
distributed systems (and not only of telecommunication ap-
plications as its name suggests). In essence OTP presents a
middleware that bundles a list of the most common design
patterns that can occur in a distributed setting, called OTP be-
haviours. The latter have been used in the development of the
system.

A most interesting and extremely useful aspect in program-
ming agent systems in Erlang (and any other distributed appli-
cation for that matter) is the lez-it-crash philosophy. Accord-
ing to the latter fault tolerance is not achieved by defensive
programming techniques (e.g. guards), but by imposing a
hierarchy of supervisor and worker processes. The former
monitors the operation of the latter and can take action (e.g.
restart) in case a failure occurs. This supervision tree allows
the development of fault tolerant applications, a crucial aspect
to the development of any real world agent based system.

EcoTruck employs Server behaviour processes, for asyn-
chronous client-server communication, FSM behaviour pro-
cesses, for interactions that require state transitions, and Su-
pervisor behaviour processes, that monitor other OTP pro-
cesses, so as to restart them in case they crash. These pro-
cesses are nicely packaged into three distinct applications,
using another OTP behaviour, called Application behaviour.
Thus, our agents in Erlang consist of a number of processes,
each being an instance of a specific OTP behaviour.

This approach greatly facilitated the design and implemen-
tation of the EcoTruck system, since it provided all the tools
necessary to built the agents as well as the necessary features
such as fault tolerance and real-time characteristics. In the
sections that follow, a presentation of the implementation of
each agent participating in the system is provided.

Engineering Intelligent Systems

N. BEZIRGIANNIS AND 1. SAKELLARIOU

5.1 Directory Facilitator

Since the EcoTruck implementation did not rely on any agent
development platform, the necessary directory services for the
agent community were provided by a system -specific Direc-
tory Facilitator (DF). This entity stores the roles and addresses
of every active agent.

Before engaging in any interaction, EcoTruck agents
(trucks and customers) subscribe to the system by passing
relevant information to the DF (role and communication de-
tails). The DF maintains this information in an Erlang Term
Storage (ETS) table, i.e. a fast in-memory data-store, part of
the standard Erlang distribution. The DF itselfis implemented
as a server OTP behaviour. The server monitors all subscribed
agent processes and if any of them become unresponsive, due
to network failure or abnormal termination, will automatically
unsubscribe them from the system, thus maintaining a list of
only active agents at each point of execution. It should be
noted that the server process itself is monitored by a super-
visor behaviour, providing the fault tolerant characteristics,
necessary for this component of the application.

5.2 Customer Agent Structure
A set of Erlang processes constitute the customer agent:
o the customer Server,
* the customer Supervisor,
* one or more Manager processes, and
e the Customer GUI process.

The customer Server is an OTP Server instance that is the
master process of the agent. Its role is to store agent’s pref-
erences and control the user interface. The server process is
monitored by a customer Supervisor process to provide all
necessary fault-tolerant features described above. When the
user places a request through a web interface that is handled
by the customer GUI process, the server spawns a new Man-
ager process and passes to it the relevant information, i.e. the
paper quantity to recycle.

The customer’s Manager process is responsible to handle
the request placed by the user, by delegating the task of its
collection to a suitable truck agent. Thus, a manager process
implements essentially the role of the manager in the CNP
protocol. Upon its initialisation the process acquires the list
of truck agents from the DF and initiates a CNP interaction as
described in section 4.1. It is implemented as an OTP Finite
State Machine (FSM) behaviour, for the reason that CNP re-
quires successive steps of interaction. These communication
steps are essentially the transition states of the FSM. At the
end of the contract assignment process, the Manager will link
itself with the “winner” truck and in specific with its Contrac-
tor process, described later in this section. This link can be
perceived as a “bidirectional monitor”; if one of the linked
processes exits abnormally, the other process becomes aware
of it. The code is depicted in figure 1. As observed the declar-
ative nature of the functional model of Erlang allows for an
elegant implementation of message passing in this case. The
strong module system of Erlang is also shown in the figure: for

vol 20 no 1 March 2012

example the foreach function belongs to the 1ists mod-
ule of the platform. Readers familiar with the Prolog logic
programming language will notice that variable names start
with a capital letter, a feature that comes from the first Erlang
implementation in the former.

The established link ensures that if a winner Contractor
crashes, the Manager will notice the failure and re-start a
new CNP interaction, on its pending paper recycling request.
When the requested task is completed, the Manager reaches its
final state to gracefully terminate its execution. The process
spawn tree is depicted in figure 2. As shown in the figure, the
Manager process communicates with multiple Contractor pro-
cesses, whereas each Contractor process communicates only
with one Manager.

A Manager process terminates gracefully also in the case
of a request decomposition: it spawns two new Manager pro-
cesses, passing to each one arequest divided in two, and termi-
nates its execution. The corresponding code is shown in figure
3. Compared to the customer Server which lives as long as
the application is running, the Manager’s lifetime span covers
only the period of time from request announcement (call for
proposals) to collection. The described behaviours together
with a GUI are packaged into an OTP application, forming
the customer agent.

53 Truck Agent Structure

The truck agent is similarly composed of a number of super-
vised processes (figure 2):

* the truck Supervisor process,

* the truck Server process,

* one or more Contractor processes, and
* the Driver process.

The truck Server is responsible for maintaining the plan (list
of collection tasks) of the agent, and is monitored by a fruck
Supervisor process as in the case of customer agents. For
every incoming call-for-proposals (CFP) request, the Server
will spawn a new Contractor process to handle the request.
The latter is implemented as an OTP FSM behaviour and is
responsible to handle all communication regarding the agent’s
participation in the CNP. If the truck agent is eligible, the
Contractor replies with a bid that contains the estimated time
of servicing. In the case that it is the “winning” bidder, it will
instruct the truck Server to schedule the task for execution
by appending it to the plan. Upon completing the task, the
Contractor process will notify the customer Manager process
that initiated the CNP via an “inform” message (figure 4) and
gracefully terminate.

A conflict that commonly arises in a multi-CFP setting is
when two or more Contractors attempt to place arecycling task
in the exact same position in the truck’s plan. In EcoTruck,
such cases are resolved, by having the truck Server to accept
one of the tasks that its Contractors propose and reject the
rest. The Contractors who failed to include their task in the
plan, will signal this failure by appropriate message exchange
to the associated Manager, who will in turn restart a CNP
interaction.

69

AGENT ASSISTED PAPER COLLECTION FOR RECYCLING

send_acceptance (BestProposer, Proposers) ->

gen_fsm:send_event (BestProposer, accept_proposal),
link (BestProposer),

lists:foreach(fun (T) ->
gen_fsm:send_event (T, reject_proposal) end,
lists:delete (BestProposer, Proposers)) .

Figure 1 Erlang Code for accepting a proposal.

Customer Agent

Truck Agent
Customer

Superviso

Customer
GUI (Web)

Customer
Server

Bidirectional link

Message Exchange with
other Ma)aager Processes
(participatioq to

multiple CNPs)

Other Truck Agents

Figure 2 EcoTruck Agent processes hierarchy and interaction.

70 Engineering Intelligent Systems

N. BEZIRGIANNIS AND 1. SAKELLARIOU

break_cfp(_Contract = {Position,Value}) ->

case Value > 1 of
true ->

start ({Position, Value/2}), % start 2 new managers

start ({Position, Value/2});
false ->

]

start ({Position, Value}) % small quantity just reset

end,
{stop, normal, []}.

Figure 3 Erlang code for CFP decomposition.

Finally, the truck driver process is an extra Server Erlang
process, which simulates the motion of the truck vehicle in-
side the city roads. This was considered necessary in order
to be able to have testing and simulation results on the imple-
mented platform. In the final production system the process
will be replaced by some kind of global positioning system
(GPS) module, mounted on the device of the truck. These
four behaviours are bundled in a truck application. The pro-
cess spawn trees of EcoTruck agents are shown in figure 2.

Since Erlang follows the virtual machine model, the ap-
plications developed can execute both in desktop and mobile
environments. This is particularly interesting in the case of
the truck application, since it allows easily executing it on a
mobile device mounted on truck vehicles. Figure 4 presents
the message exchange under the Contract Net Protocol of the
EcoTruck agents processes.

Finally, it should be noted that the Truck application em-
ploys the Google Maps Directions Service to provide the truck
driver with routing information as well as live traffic data
where applicable. Additionally, both Customer and Truck
applications have a GMAPS based web monitoring tool. The
service responses are parsed with the xmerl Erlang parsing li-
brary. Each application relies on Google Maps Javascript API
to display to the user a live view of the system’s state. The
Google Maps JSON encoded content along with any HTML
files are displayed to the user by Misultin, a lightweight Er-
lang web server. The reason for not having, instead, a native
GUI, is that a web interface can be more portable, thus the
EcoTruck software will run on any hardware an Erlang VM
exists for. Figure 5 shows the GUI of EcoTruck.

6. EXPERIMENTAL RESULTS

While EcoTruck is being developed and tested solely on a sin-
gle machine, for the simulation and benchmarking part of the
program a series of virtual private servers (VPS) are deployed
to better match a real-world scenario and provide a more ac-
curate evaluation of the overall system. In this setting each
server corresponds to a separate EcoTruck agent, uniquely
identified by an IP address. The EcoTruck software was pri-
orly being configured and installed on each server, essentially
forming a distributed Multi-Agent System.

The servers/agents of the system were hosted in a “cloud”;
the term mainly refers to an infrastructure where computing
power, storage, and networking are provided to the user on-

vol 20 no 1 March 2012

demand. Cloud-hosting companies follow a pay-by-use pric-
ing scheme and usually package their services with extra man-
aging and supervising tools. A cloud setup, compared to a tra-
ditional dedicated-server setting, has the advantage of being
flexible and in the meantime inexpensive. Within our sys-
tem, agent nodes were being instantly created or destroyed,
to accommodate on-the-fly changes to the experiment con-
figuration. Thus, we were able to run experiments with a
varying number of agents. Finally, a RESTful API, offered
by the cloud company, made possible to snapshot and clone
EcoTruck agents for easily populating the agent community.

New software modules were specifically developed for sim-
ulation and benchmarking purposes and were bundled to-
gether with the EcoTruck software. A customer simulator
process resides in each server and provides input to the cus-
tomer agent, i.e. creating new recycling requests at random
times and with varying quantity, much like a real user of the
system would do. The results presented here are based on
a recycling request generation pattern of one new request in
time intervals varying from 1 to 10 minutes and with the paper
recycling quantity varying between 10 to 100 units.

Additionally, on each agent a tracer process was running
constantly with the task of logging messages and function
calls related to the EcoTruck application. The logs were col-
lected and combined by Inviso, a distributed tracing system
included in the official Erlang distribution. Afterwards, each
“merged” log was processed and analysed by custom-made
Erlang functions, yielding the presenting results.

Other libraries and features of the language were used to
assist experimentation. Hot-code loading made possible to
change on-the-fly running code — in this case switching on
and off EcoTruck parameters — without even restarting the Er-
lang VM or the server. Based on the rich rpc library, code was
written to systematically run, stop and control, within Erlang
itself, the EcoTruck agents of the running system. Thus, Er-
lang, apart from providing a set of features to implement agent
systems, it also proved to have all the necessary facilities to
allow easy testing and benchmarking of the system, in a close
to real-world setting.

The described experimental setting above allowed to ob-
tain some initial results regarding the system. These results
are summarised in the table 1. Columns “Customers” and
“Trucks” provide the size of the agent community, whereas the
“Total Msgs” column presents the total messages exchanged
between agents. The column “Total Request” is the number
of paper collection tasks generated in each experiment run.

71

AGENT ASSISTED PAPER COLLECTION FOR RECYCLING

msc Recycling Service
DF Truck Truck Truck Customer Customer
[Server | | Driver | [Server | |Contractor| | Manager | [Server |
recydle
client O—>
start
list_trucks
TrucksList
cfp cfp (to other| trucks)
start
get_state
state
refuse
propose propose
accept_proposal
reject_proposal
add_goal
goal_added
run_job
step_done
job_done
done
inform
update_value
|]] |

Figure 4 Message exchange between EcoTruck Processes

Finally, the “CFP/Request” column depicts the average num-
ber of call-for-proposal rounds that were necessary in order to
successfully assign the task to a truck agent.

As seen from the results, the system behaves as expected;
an increase in the number of customers leads to an increased
number of messages and requests sent, while the CFP/Request
ratio stays close to 1, meaning that requests are in most of the
cases fulfilled in the 1st round. The exception manifested in
the case of having 100 customers -10 trucks in the experi-
ment, where there is a high number of call-for-proposals per
request. This is expected since the increased number of cus-
tomer agents participating leads to many failed CFPs that have
to be decomposed in order to be successfully delegated to a
truck. However, when the number of participating trucks in-
creases this ratio drops.

Table 2 presents results regarding the total paper quantity
collected and the average waiting time of customer agents.
Again the results depicted are as expected, with the average
waiting time dropping when the number of trucks increases,
and raising when the customer agents participating in the sys-
tem is increased. Thus, this initial set of experiments demon-
strates that the ideas, cooperation protocol and design of the
system achieve its original goals.

72

Table 1 Results from initial run of Ecotruck with each truck having a capacity
of 1000 units.

Customers | Trucks Total Total CFP/
Msgs | Requests | Request

100 20 49238 543 1.69
100 10 159512 558 13.78
50 10 8501 287 1
20 10 3305 107 1
10 10 1922 62 1
10 5 832 52 1
10 3 476 49 1

7. AN IMPROVED CFP DECOMPOSI-
TION

Initial versions of the EcoTruck system relied on a somewhat
naive implementation of the CFP decomposition; recycling
requests that were simply too large to be handled by trucks
in the agent community, were broken down into two smaller
requests of equal size, in hope that these new collection tasks

Engineering Intelligent Systems

N. BEZIRGIANNIS AND I. SAKELLARIOU

: Oite Tower
%[@ 2N\ 5 m Satellit |
il e - i
G = wm,'-,;ﬁ'f'lﬂu Fanepistimio ",21::_ b _
+ qf.% 1 = Makedonias LY %' ‘é
» Yy
- %%. o i i
o S
g - £\ . 5%%
ol al!"-"‘- d% = = '1:?
] = 2 P &
E) od” i}#ﬁ g
e T
oo L)L AR % . B
L 5 - G, =1
d ey 4 ¥, 2. %
i F° R) vl &
pirip L - S S s W B S %% 2
S B ELVCRG Fe
% = - 3) T el 5
e N 7 r = A & 5 =
= ¢ A FloL — H.» A S (N
DOIE jzantd - %
A TR Ma:hdﬁ;a 2n11§e|e Afas-ﬁmr%f'lgﬁ'
|:'4~4“ Recycle | Logout |

Figure 5 Web Interface of EcoTruck Application

Table 2 Results regarding total paper quantity collected and Average Cus-
tomer Waiting Time. Again each truck having a capacity of 1000 units.

Customers | Trucks | Quantity | Customer Waiting
100 20 29386 42.49
100 10 17809 150.55
50 10 14407 35.22
20 10 5680 30.87
10 10 3082 29.48
10 5 2906 35.21
10 3 2728 63.67

could be delegated more easily to trucks in the system. In order
to improve this rather simplistic approach, a more informed
decomposition mechanism was introduced that aims at the
reduction of interactions (CFPs) in the agent community.

In the new setting, each refuse message in the CNP pro-
tocol is annotated with the truck’s current available capacity,
i.e. each truck that refuses to perform the request annotates
its reject message with the capacity it would be willing to
collect based on its current plan. If at the end of the bidding
phase there are no available trucks to handle the request, the
customer Manager process extracts this information from the
refuse messages and decomposes the initial CFP to a series
of CFPs that better match the current available capacity of
the truck agents. Thus, the next round of CFPs has increased
chances of succeeding.

Table 3, summarizes some preliminary results on the new
technique. Itis particularly interesting to note the dramatic de-
crease in the CFP/request ratio when the resources are scarce.
For instance when there are only three trucks available in the
community a similar number of requests leads to a reduction

vol 20 no 1 March 2012

in half of the necessary average rounds of CFPs in order to
delegate the task.

The average waiting time to satisfy a collection request can
be considered as a measure of the system’s performance, since
one of the goals of the system is to pick up the recyclable paper
as quickly as possible. Table 4 shows that more informed
decomposition leads to an increase in the performance with
respect to the former.

Of course, this is an initial evaluation of the system and
a more thorough experimental assessment is needed in order
to safely conclude on the improvement of the decomposition
technique.

8. CONCLUSIONS AND FUTURE WORK

EcoTruck is a multi-agent system for the management of re-
cyclable paper collection process. We believe that the specific
approach can greatly facilitate and optimise the process, thus
allow its wider adoption by the parties involved.

As discussed, the system’s implementation is based on con-
currency and distribution mechanisms of the Erlang language.
We strongly believe that robustness and fault-tolerance are im-
portant qualities that a multi-agent system should meet. Al-
though, the Erlang language is not a MAS platform it appears
to have the necessary features to facilitate simple and elegant
implementations of multi-agent applications. It should also
be noted that the language proved to have excellent tools and
facilities in order to deploy and run the system in a cloud
environment to perform simulation and testing.

The present EcoTruck system follows a simple and natural
modelling of parties involved in the process, by mapping each
participant to an agent. In the case of the EcoTruck system,
such a modelling is favoured since each customer is indepen-

73

Table 4 Results comparing the naive and more informed approaches to task decomposition in relation to the Average Distance and the Average Customer Waiting

Time.
Distance/Request | WaitingTime/Request
Customers | Trucks | simple impr simple impr
10 10 7667.58 | 6803.62 | 73.69 61.72
10 5 7954.19 | 7570.52 | 157.93 75.8
10 3 5361.69 | 6211.37 | 201.52 150.98

AGENT ASSISTED PAPER COLLECTION FOR RECYCLING

Table 3 Results comparing the naive and more informed approaches to task decomposition.

Msgs Requests CFP/Request
Customers | Trucks | simple | impr | simple | impr | simple | impr
10 10 2593 | 2244 59 58 1.86 1.67
10 5 8949 | 1260 67 54 12.67 2
10 3 20916 | 9453 65 60 52.92 | 25.97

dent and thus can be naturally modelled as a single agent. In
the case of trucks, the system could have adopted a flexible
organisation of the former in teams, which would have led
to a more complicated cooperation schema. However, such
an organisation might not have demonstrated significant ben-
efits since all members of the team would have had the same
capabilities, and only one member (truck) is required for com-
pleting the task, and thus no team formation is necessary. In
the case of large requests, that demand more trucks, decom-
position is performed by customer agents, solving the overall
task in a distributed manner. Since this is a design issue, and
an extensive experimental evaluation is necessary, it is one of
the future directions that work presented in this article would
extend to.

There are quite a few features that could be incorporated
in the current system among which the most interesting ones
include:

* Dynamic re-planning and scheduling. In the present sys-
tem, each truck agent maintains its own plan that has a
static ordering of jobs, to which new jobs are inserted in a
FIFO manner. A more intelligent planning process would
include more dynamic features, such as prioritisation of
jobs based on a number of criteria such as proximity to
the current position and estimated time of arrival, and
could help minimise the total travel path of the truck.

Smarter Truck Positioning. Based on past data, truck
agents can identify geographic areas where most requests
appear in, and could decide to place themselves closer
to those areas and consequently increase system perfor-
mance and success rate.

* Better Decomposition of CFP’s. A more informed man-
ner of splitting large requests could involve taking ad-
vantage of information attached in “refuse” messages of
the CNP, and breaking down the request in simpler ones
of appropriate size, based on the current availability of
the trucks. Although an initial idea of the former was
tested in this work, as experiments show there is room
for more elaborate techniques and further experimenta-

74

tion. Such sophisticated techniques would potentially
lead to and increased overall performance, since fewer
agent interactions would occur.

There are also a few improvements that could be done on the
implementation level. For instance, the Erlang Term Storage
(ETS), can be replaced by a Mnesia database, that would allow
to exploit the fault-tolerance and distribution advantages that
come for free with the Mnesia system. The latter would allow
to have multiple replicated instances of the DF database, and
thus achieve robustness through redundancy.

Finally, deployment of the application in a real-world en-
vironment, would allow to fine-tune the system and examine
possible patterns and procedures emerging in real-life situa-
tions. Since the system is based on a extensively tested, indus-
trial strength platform (Erlang), we believe that the transition
to a full-fledged real-world application can be accomplished
with relative ease.

REFERENCES

1. Jennings, N, Sycara, K, and Wooldridge, M: A roadmap of agent
research and development. Journal of Autonomous Agents and
Multi-Agent Systems, 1 275-306, (1998).

2. Bezirgiannis, N, and Sakellariou, I: Ecotruck: An Agent Sys-
tem for Paper Recycling. In Lazaros Iliadis, Ilias Maglogiannis,
and Harris Papadopoulos, editors, Artificial Intelligence Ap-
plications and Innovations, volume 364 of IFIP Advances in
Information and Communication Technology, pages 303-312.
Springer Boston, (2011).

3. Armstrong, J: The Development of Erlang. In Proceedings of
the Second ACM SIGPLAN International Conference on Func-
tional programming (ICFP "97), pages 196-203, New York, NY,
USA, ACM (1997).

4. Kovacs, GL and Haidegger G: Agent-based solutions to support
car recycling. Mechatronics, 2006 IEEE International Confer-
ence, pages 282 —287, July (2006).

5. Courdier, R, Guerrin, F, Andriamasinoro, FH, and Paillat, JM:
Agent-based Simulation of Complex Systems: Application to
collective management of animal wastes. Journal of Artificial
Societies and Social Simulation, 5(3) (2002).

Engineering Intelligent Systems

N. BEZIRGIANNIS AND I. SAKELLARIOU

6.

10.

11.

Karadimas, NV, Rigopoulos, G, and Bardis, N: Coupling Multi-
agent Simulation and GIS - an application in waste management.
WSEAS Transactions on Systems, 5 2367 aL.* 2371 (2006).

. Fischer, K, MAYller, JP, and Pischel, M: Cooperative Trans-

portation Scheduling: an application domain for DAI. Journal
of Applied Artificial Intelligence, 10 1-33 (1995).

. Perugini, D, Lambert, D, Sterling, L, and Pearce, A: Provisional

Agreement Protocol for Global Transportation Scheduling. Ap-
plications of Agent Technology in Traffic and Transportation
pages 17-32, Calisti, M, Walliser, M, Brantschen, S, Herbstritt,
M, KlAYgl, F, Bazzan, A, and Ossowski, S, Whitestein Series
in Software Agent Technologies and Autonomic Computing,
BirkhAnuser Basel (2005).

. Di Stefano, A and Santoro, C: eXAT: An Experimental Tool for

Programming Multi-Agent Systems in Erlang. AI*IA/TABOO
Joint Workshop on Objects and Agents (WOA 2003), VIL-
LASIMIUS (2003).

Di Stefano, A and Santoro, C: Designing Collaborative Agents
with eXAT. 13th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises 2004
(WET ICE 2004), pages 15 — 20, IEEE Computer Society,
(2004).

Varela, C, Abalde, C, Castro, L, and Gulias, J: On modelling
agent systems with Erlang. The 2004 ACM SIGPLAN workshop

vol 20 no 1 March 2012

12.

14.

15.

16.

17.

18.

19.

on Erlang, (ERLANG ’04), pages 65-70, New York, NY, USA,
ACM (2004).

Wooldridge, M: An Introduction to MultiAgent Systems. John
Wiley & Sons (2002).

. Jennings, NR: An Agent-based Approach for Building Complex

Software Systems. Communications of the ACM, 44(4) 3541
(2001).

Smith, RG: The Contract Net Protocol: High-level communi-
cation and control in a distributed problem solver. IEEE Trans-
actions on Computers, , C-29(12) 1104 -1113 (1980).

Smith, RG, and Davis, R: Frameworks for Cooperation in Dis-
tributed Problem Solving. IEEE Transactions on Systems, Man,
and Cybernetics, bf 11 61-70 (1981).

Aknine, S, Pinson, S, and Shakun, MF: An Extended Multi-
agent Negotiation Protocol. Autonomous Agents and Multi-
Agent Systems, 8 5-45 (2004).

Armstrong, J: Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf (2007).

Armstrong, J: A History of Erlang. Third ACM SIGPLAN
conference on History of programming languages (HOPL III),
pages 6-1-6-26, New York, NY, USA, ACM (2007).
Torstendahl, S: Open Telecom Platform. Ericsson Review, 1,
(1997).

75

