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1 Introduction

A large number of problems appearing in diverse areas such artificial intel-
ligence, engineering, operational research, scheduling, planning and resource
allocation can be modeled as constraint satisfaction problems (CSP). Infor-
mally, such a problem consists of finding a valid assignment of values to vari-
ables under a set of constraints on the variables. Despite its simple statement,
the problem belongs to the NP-complete class of problems, thus its solution
demands sophisticated techniques. This led to the emergence of constraint
programming (CP), a new area that aims to provide the necessary support
to efficiently describe and solve large constraint satisfaction problems. CP is
based on a strong theoretical foundation and includes extensions to a variety
of programming languages that belong to different programming paradigms,
such as logic programming, object oriented programming, etc.

Historically constraint logic programming (CLP) was the first CP paradigm,
mainly due to the fact that its declarative nature offered a natural way to state
constraints. CLP is an extension of traditional logic programming languages
such as Prolog, in which the standard unification mechanism is replaced by
constraint satisfaction. In the past decade, CLP has reported a number of
successful real-world applications and has been classified by the ACM as one
of the “strategic directions” in computer science.

The availability of a large number of machines connected by some local net-
work nowadays, naturally led to the idea of solving CSP distributively. In
this direction, Distributed Constraint Programming investigates how multiple
processing units, called workers or (recently) agents, cooperate to solve a CSP
problem. Usually each agent “owns” a subproblem of the original problem, i.e
a subset of the original variables and the constraints on them. Since it is hardly
ever the case that the original problem is decomposed in such a way that there
are no constraints on variables that belong to different agents, in such a set-
ting agents need to communicate to achieve a consistent global solution while
ensuring that the constraints of their own subproblem are not violated. The
distributed approach is encouraged not only by the possible gains regarding
efficiency that might emerge by such problem partitioning, but also by the
fact that in many real-world applications problem information is distributed
among different departments, thus if the problem is solved centrally, costly
mechanisms for data communication and synchronization are required.

CSPCONS is a constraint logic programming language for building such DCSP
applications. It is an extension of the Communicating Sequential Prolog 11
(Csp-11) a version of Prolog that is based on the notion of communicating
sequential processes [1]. CSPCONS supports independent CLP processes, each
having its own constraint store that communicate through message exchange



over channels and events. Communication is possible both between processes
that reside in the same host and on different hosts over TCP/IP networks.
Constraint solving programming facilities in CSPCONS are implemented in
the form of C libraries, thus permitting the incorporation of new constraint
systems or algorithms just by the addition of the appropriate library. The
current version includes a library for constraint satisfaction over finite domains

(FD) and reals.

The combination of the channel based communication and constraint satisfac-
tion, all under the logic programming framework, offers a powerful platform for
rapid prototyping and implementation of any distributed CSP application and
an excellent testbed for DCSP algorithms. This paper extends our previous
work described in [2] by providing a more detailed view of the facilities of the
platform, changes to the finite domain solver and a more complex application
demonstrating the advantages of our approach.

The rest of the paper is organized as follows. Section 2 briefly presents re-
lated work in the field of distributed constraint satisfaction. An overview of
the features of the Csp-11 language is presented in Section 3, considered nec-
essary since all these are inherited to the CSPCONS language. The necessary
extensions for the support of constraints together with the description of the
implementation of the FD solver that form the CspPCONS language is given
in Section 4. A simple distributed constraint version of the job-shop schedul-
ing problem is presented in 5, to demonstrate the CSPCONS ability to easily
implement such algorithms. Finally conclusions and future work are stated in
section 6.

2 Distributed Constraint Satisfaction

A constraint satisfaction problem (CSP) consists of finding an assignment of
values from a given domain to a set of variables, such that a set of constraints
on the variables is satisfied. More formally a constraint satisfaction problem
consists of:

e a set of variables X z,zo,..., 2,

e a set of domains D each associated with a variable Dy, Ds, ..., D,,, i.e. z; €
D;

e a set of constraints C' that impose restrictions on the values that the vari-
ables can take. Each constraint Cg(zg1, ..., Tkm), m <= n is a predicate on
the Cartesian product Dy; X Dys X ... X Dy, that is true on a subset of the
product, indicating that a value assignment that belongs to the subset is
valid under the constraint. Constraints can be unary, binary or higher order
depending on their arity.



In distributed constraint satisfaction problem (DCSP) variables and/or con-
straints are distributed over some network of agents, which are constraint
solvers that co-operate to solve the original problem. A number of approaches
have been reported to the literature that address the issue of building dis-
tributed constraint programming applications. The rest of this section pro-
vides a brief overview of languages and algorithms proposed for tackling DCSP
problems.

2.1 DCSP Languages

Quite a few approaches to designing a suitable language for the implementa-
tion of distributed constraint applications have been reported. In the sequel
we will restrict our attention to those that belong to the logic programming
paradigm, as these are more related to our work.

CIAOQO is a logic programming system based on Prolog, extended with con-
straints, parallelism and concurrency [3,4]. Distributed execution in CIAQO in-
volves a number of workers (processing units), whose communication is based
on the Linda library, a blackboard architecture, and the use of attributed
variables[5]. The CsPCONS language presented in this paper has a completely
different approach to communication: Prolog applications communicate via
channels, thus allows a more robust and flexible communication schema.

A different approach to solving CSP problems in parallel has been proposed by
Tong and Leung in [6]. Their model, called Firebird, is based on an extension
of the Andorra principle and is an attempt to build a concurrent constraint
logic programming system on a massively parallel SIMD computer, that will
exploit OR-~Parallelism. In Firebird execution interleaves between indetermin-
istic derivation steps that consist of guard tests, commitment and spawning
in the same manner as committed-choice languages and non-deterministic
derivation steps which consist of setting up a choice point on a domain vari-
able and attempting all the alternative values in its domain in an OR-parallel
manner. However in Firebird parallelization is automatic, i.e. the language
follows the spirit of “classic” parallel logic programming, whereas in Csp-
CONS the programmer has the freedom (and of course the burden) to define
a cooperation/distribution schema custom to the application developed.

Probably the most successful distributed constraint language is Mozart [7,8] an
implementation of the distributed OZ language[9]. Oz is a multi-paradigm lan-
guage [10] that offers powerful constraint solving facilities and has been used
in a number of projects. OZ (and Mozart) supports the logic programming
paradigm along with concurrent object oriented functional programming and,
to the opinion of the authors, presents a new powerful programming paradigm,



different than that CSPCONS follows, i.e extending a logic programming lan-
guage to support distribution and constraints while maintaining the standard
Prolog syntax. It has to be noted however that the average Prolog programmer
might require some time to adopt to the syntax and programming philosophy
of OZ, whereas in CSPCONS such a training period is not required.

Two of the most important representatives of the CLP paradigm are SICtus
and ECLiPSe. Both platforms offer powerful constraint solving capabilities
by providing a number of efficient solvers [11-14]. In both platforms com-
munication between two applications over TCP/IP networks can be achieved
through sockets that establish streams between two machines; the set of pred-
icates offered maps directly to BSD-style socket functions. Of course, someone
could argue that since both languages provide interface facilities to foreign
languages, such as C/C++ and JAVA communication could be implemented
via these, however such a solution would require from the programmer more
effort to manage the development of the application.

In CspcoNs however, the programmer has more control over TCP/IP com-
munication, than that provided by sockets, since a detailed mechanism for
configuring connections to fellow applications is provided. But the extended
communication facilities do not end here; the TCP/IP network interface pro-
vides an alert mechanism that informs the application about changes in the
status of partners participating the community. Thus an agent in the com-
munity knows everything it needs to know for successfully cooperating with
other agents in the community. The latter allows constructing a reliable com-
munication infrastructure for the participating agents. In addition there can
be a clear separation of the code handling communication with the rest of the
code by assigning all communication related operations to a separate process.

Although a mixture of C/C++ and some solver library can equally serve in
the case of building a distributed constraint application, the approach requires
encoding everything in a lower level language thus increase development and
maintenance times.

Finally, a prototype implementation of a multi-threaded version of SICStus
Prolog with basic send /receive operations between threads is described in [15],
which is close to the programming model of CsPcONS. However as shown in
the following sections CSPCONS offers a richer set of programming primitives
when it comes to communicating sequential processes programming. To our
knowledge no language that combines communicating sequential processes, to
the extent that CSPCONS does, with constraints has been proposed in the
literature till now.



2.2 DCSP Algorithms

A number of algorithms have been proposed that address the issue of dis-
tributed constraint satisfaction. A class of these involves distributed/parallel
versions of local consistency algorithms, i.e. they are distributed propagation
algorithms. For example earlier work in the field involved two massively par-
allel versions of the AC-4 algorithm proposed by P. Cooper and M. Swain[16].
In [17] Y. Zhang and A. Mackworth present three parallel and distributed al-
gorithms for computing consistency by formulating a CSP as a dual network,
that were tested on a transputer based machine. The DisAC-4 algorithm [18],
is a coarse-grain distributed version of the AC4 algorithm, based on a mes-
sage passing scheme for communicating domain reductions. In the same spirit
an alternative distributed arc consistency algorithm, named DisAC-9 with
minimal message passing which is based on the variation of the AC-6 [19] con-
sistency algorithm is presented in [20]. More recently a distributed constraint
propagation algorithm based on chaotic iteration [21] was proposed in [22,23].
Finally, a distributed version of the singleton arc consistency algorithm, that
is also based on a message passing scheme for the communication of domain
inconsistencies can be found in [24].

The second class of algorithms performs distributed search using a set of agents
that communicate with a message passing scheme.For example in [25,26] au-
thors propose an asynchronous backtracking algorithm and its modification,
the asynchronous weak-commitment search, that efficiently solves distributed
constraint satisfaction problems. Other approaches involve algorithms for dis-
tributed backtracking algorithm (DIBT) [27], distributed forward checking
(DIFC) [28], distributed dynamic backtracking (DisDB) [29] that combines
ideas from ABT and DIBT, and an algorithm [30] that integrates a distributed
bounds consistency algorithm, called DHC, with a distributed search tech-
nique called Asynchronous Aggregation Search [31]. A common characteristic
of almost all distributed search algorithms mentioned above is information ex-
change is implemented through message passing, making the CSPCONS plat-
form an ideal platform for their implementation using logic programing.

3 The Csp-11 Prolog

Communicating Sequential Prolog II (Csp-11) [32,33] is a distributed logic
programming system that follows the standard ISO Prolog syntax !, but is
further enriched with features like modularity, multitasking, real-time pro-
gramming and network communication. CSP-11I supports the communicating

1 ISO/IEC 13211-1



sequential process programming methodology [1] in a Prolog environment.
Thus the main concept of CsP-I1 is a Prolog process. Processes run in parallel
and communication between them is achieved through message passing over
channels and events, when they reside to the same host (same application).

Channel-based communication is extended over TCP/IP networks, provid-
ing the ability to establish connections between different Csp-11 applications
across the Internet. Furthermore, under this schema Csp-11 also provides com-
munication with foreign (non CS-Prolog) applications, an interface to rela-
tional data base systems, real-time programming methods like cyclic behavior,
reaction to predefined events, timed interrupts, etc.

The system consists of three main components: a compiler, a linker and a
runtime system. The Prolog source is compiled into a binary format file con-
taining the byte code. The compilation follows the Warren Abstact Machine
(WAM) approach [34], probably the most widely adopted standard for com-
piling Prolog programs. It should be noted that the Csp-11 byte code is in
some aspects different than the WAM code, however a complete description
of these differences is outside the scope of this paper. The Csp-1I code is
interpreted by a ”byte code interpreter” when executing the CS-Prolog run-
time system. Among other things the system includes a pre-processor similar
to what is found in C compilers and an integrated development environment
with a multi-window trace utility.

3.1 Csp-11 Processes

A Csp-11 process is defined as the execution flow of a Prolog goal that has its
own Prolog execution environment and dynamic database. Its progress is inde-
pendent of the execution of other processes. The separation dynamic databases
ensures that processes may influence each other only by the supported commu-
nication techniques, i.e. channels, events and interrupts, or through external
objects like files. A CsP-1I application consists of any number of processes as
shown in Figure 1, that are identified by a unique system-wide symbolic name.

Two types of processes are supported:

e self-driven or normal processes, which is the most usual kind, and
e event-driven or real time processes.

A self driven process is characterized by its (Prolog) goal; after its creation,
it will begin the execution of this goal. The non-fatal termination of a self-
driven process is determined by the termination of its goal, after which it
disappears from the CsP-1I system and will never reappear. Definition of self
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Fig. 1. Processes in a CsP-II application

driven processes is performed via the new/3 built-in predicate; for instance
the code below defines a self driven process named processA, with the Prolog
goal queens (Solution).

%h% Definition of a self-driven process

new(processA, queens(Solution)),

A real time process is characterized by one (Prolog) goal for the initialization,
one goal for the event handling and by the description of the events that
trigger its execution. The initialization goal is executed once and provides
the means for performing any necessary setup actions; after its successful
termination the process switches to a cyclic behavior. From that moment
on it is controlled by the incoming events. For every real time process, the
incoming events are gathered in a separate first-in-first-out input queue, from
which the process consumes them by initiating its event-handling goal. The
number of events that real time processes can be triggered for is unlimited.
Successful termination of a process is signaled by the failure of its event-
handling goal. Such termination is considered as regular; it does not affect the
overall success or failure of the application. A real time process is defined by
the built-in predicate new_rt/5, as shown below:

%h% Definition of a real time process

new_rt(processC,respond,pInit(Data), [stop,find,get],id1e(600)),



The predicate in the example above defines a real-time process named processC,
for which a predicate respond handles all incoming events, the predicate
pInit/1 performs all necessary initialization operations, the process responds
to the events stop, find and get, and id1e(600) defines that a timer event
should be generated for this process if another explicit event is not generated
for 6 seconds.

3.2  Inter-Process Communication

Inter-process communication is achieved by synchronous messages or by event
passing. In the former case messages are passed through communication chan-
nels. A message can be any Prolog term except a single unbound variable,
however compound terms containing unbound variables are allowed. Figure 2
presents an example of the code required for channel communication between
processes A and B of figure 1. Communication channels act as system-wide
available resources, identified by unique names and may appear and disappear
dynamically during the program’s lifetime. A channel implements an one way
communication between two processes; in such a connection one process has
the sending end of the channel and the other the receiving end. The total
number of channels in the system and the number of the channels a process
can be connected to are unlimited.

%%h% Process A

open_channel_for_send(channel_ab),
send(sendChan, address(john_smith,Addr)),
close_channel (channel_ab),

%%% Process B

open_channel_for_receive(channel_ab),
receive (sendChan,Message),
close_channel (channel_ab),

Fig. 2. Send Receive Operation between two CSP-11 processes

Events serve for triggering real time processes and are also identified by
system-wide unique names. Event generation can occur either explicitly by
the built-in predicate generate_event/2 or implicitly by the internal clock
of the Csp-11 scheduler. The latter allows to invoke execution of the real-
time process in specific time intervals or when the process is idle for a certain
amount of time (see example in section 3.1). The number of the available



events in a program is limited only by the system’s resources and every occur-
rence of an event may have an optional data argument that carries additional
information. As in the case of channel messages this data argument is an arbi-
trary Prolog term, except the case of a single unbound variable. For example
the following predicate generates an event named find with the optional data
argument address(johnSmith).

generate_event (find,address(johnSmith)),

Finally, it should be noted that processes can backtrack, however communi-
cation is not backtrackable.

3.2.1 The Dining Philosophers’ Problem in CSP-11

To illustrate further the the notions of processes and synchronized communi-
cation, this section presents a CsP-11 implementation of the well known Dining
Philosophers’ problem. The problem concerns process resource allocation and
was originally proposed by E.W.Dijkstra [35].

The problem is as follows: Five philosophers spend their lives thinking and
eating. Eating takes place around a circular table surrounded by five chairs,
one for each philosopher. In the middle of the table there is a large bowl of
spaghetti and each philosopher has on its left a fork (figure 3). Each fork
can only be picked up by one philosopher at a time. In order to eat, each
philosopher has to sit down in his own chair and pick both forks on his left
and right. After eating for while the philosopher puts down both his forks and
gets up from his chair to continue thinking.

Philosopher 4

Philosopher 5
Philosopher 3

Philosopher 1 Philosopher 2

Fig. 3. The Dining Philosophers Problem

The solution to the problem presented in this section is the one proposed by
Hoare in [36]. Each philosopher is modelled as a process, which executes the
loop sit down, pick up fork on the left, pick up fork on the right, eat, put
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down fork on the left, put down fork on the right and get up. Each fork is also
modelled by a process that accepts messages (events in the original problem
solution) from the two philosophers in its neighborhood. There are two types
of messages that can be accepted by a fork process: a pick_up_fork and a
put_down_fork message that correspond to the two philosopher actions. In the
specific solution, deadlock avoidance relies on the existence of a “footman”
i.e. a process that allows at most four philosophers to sit down. A detailed
specification of the solution can be found in [36].

Philosopher 4
chan(5,4) chan(4,4)

o
Fork 5

chan(5,5)

Fork 4
~- o

\l/ chan(4,3;

<—»—-—-—<—

Philosopher 5 Philosopher 3

- -

chan(l 5 Footman/l chan(3 3)
Fork 1 - \ Fork 3

chan(1,1) Forkz \chan(32)

chan(Z 1) chan(Z 2)
Philosopher 1 Philosopher 2

chan(<fork>,<philosopher>) ----C>
sit_down channel ...........: .
get_up channel ----~ =

Fig. 4. Csp-11 processes and channels for the Dining Philosophers’ Problem

The communicating sequential processes solution can be directly mapped to
a Csp-11 Prolog implementation. Each “philosopher” and “fork” process be-
comes a Csp-11 self-driven process and all processes communicate over syn-
chronized channels, as shown in figure 4. For example, the philosopher 1
process sends messages (events) to fork 2 over the channel chan(2,1). Ar-
rows in the figure indicate the direction of messages in the channel; for in-
stance, in the previous example philosopher 1 holds the sending end of the
chan(2,1) channel, while fork 2 the receiver end of the same channel. All
chan(<fork>,<philosopher>) channels are fixed, in the sense that both their
ends are owned by the same processes during the execution of the program.
The previous does not hold for the sit_down and get_up channels: although
the receiving end of both these channels is always owned by the footman pro-
cess, the sending end belongs to a different philosopher process each time,
for reasons that will be explained in the following.

11



%%% Dining Philosophers Implementation in CSP

main_goal(_):- new(footman,footman_top_level), % footman process
define_forks(5) ,define_philosophers(5),
start_processes.

%%% Definition of fork processes

define_forks(0).

define_forks(N):- N>0,NN is N-1,
new (fork_proc (N) ,fork_top_level(N)),
define_forks(NN).

%%/ Definition of philosopher processes

define_philosophers(0).

define_philosophers(N) :-
N>0,NN is N-1,
new(philosopher_proc (N) ,philosopher_top_level(N)),
define_philosophers(NN) .

Fig. 5. Dining Philosophers in CSP-1I : Process definition

The Csp-11 code for the processes definition for the dining philosophers’
problem is given in figure 5. The predicate main goal/1 is invoked by the
Csp-11 runtime system. The predicate defines recursively all necessary pro-
cesses by calling the new/2 predicate described in section 3.1. For exam-
ple the call new(fork proc(N) ,fork top_level(N)) (where N is an integer
between 1 and 5) defines a process fork proc(N) with the top level goal
fork_top_level(N). Finally main_goal/1 invokes process execution by call-
ing the start_processes builtin.

%%% Top level predicate for philosopher process
fork_top_level(N):-
P is 5 - ((1-N) mod 5),
open_channel_for_receive(chan(N,N)),% right phil.
open_channel _for_receive(chan(N,P)),% left phil.
fork([chan(N,N),chan(N,P)]),
close_channel(chan(N,N)), close_channel(chan(N,P)).

%%% Main loop (recursion) for the fork process

fork (CHANS) : - receive (CHANS,MSG_UP,WINNER), MSG_UP=pick_up_fork,
receive (WINNER,MSG_DOWN) , MSG_DOWN=put_down_fork,
! ,fork (CHANS) .

Fig. 6. Dining Philosophers in Csp-I1 : Fork Process

Figure 6 presents the implementation of the fork process. There are five such
processes in total and each such process owns the receiver end of two channels
that correspond to the two philosophers, between which the fork is placed.
Both channels are opened for receive by the fork top_level/1 predicate and
are passed as an argument (list) to the fork/1 predicate. The latter blocks
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until a pick_up_fork message is received from either of the two channels.
Upon the reception of the first message, the third argument of the receive/3
predicate is unified with the name of the winner channel, i.e. the channel
over which the first message arrived. Then the process blocks, waiting for a
put_down fork message from the same (WINNER) channel, i.e. from the same
“philosopher”. Finally, the process loops by calling itself recursively.

%%% Top level predicate for philosopher process
philosopher_top_level(N):-
F is (N mod 5) + 1,
open_channel_for_send(chan(N,N)), %% LEFT FORK
open_channel_for_send(chan(F,N)), %% RIGHT FORK
philosopher (N, [chan(N,N),chan(F,N)1),
close_channel (chan(N,N)), close_channel(chan(F,N)).

%%% Main loop (recursion) for the philosopher process
philosopher (N, [LEFT,RIGHT]) : -
sit_down_at_table(N),
pick_up_fork(LEFT), pick_up_fork(RIGHT),
eat (N),
put_down_fork (LEFT), put_down_fork(RIGHT),
get_up_from_table(N),
!, philosopher (N, [LEFT,RIGHT]).

%%% Philosopher’s actions

sit_down_at_table(N):-
open_channel_for_send(sit_down,scheduled),
send(sit_down,N), close_channel(sit_down).

pick_up_fork(CHAN) : - send (CHAN,pick_up_fork).
put_down_fork (CHAN) : - send (CHAN,put_down_fork) .
eat(N) :- format(’Philosopher “w is eating “n’,[N]).

get_up_from_table(N):-
open_channel_for_send(get_up,scheduled),
send(get_up,N), close_channel(get_up).

Fig. 7. Dining Philosophers in CsP-11 :Philosopher Process

The Csp-11 code for the philosopher process is shown in figure 7. The
philosopher_top_level/1 process opens two channels for sending messages,
each corresponding to a fork on the philosopher’s side, after which the main
loop of the philosopher process is executed (predicate philosopher/2). Most
of the philosopher’s actions are self explained, for instance picking up a fork is
actually sending a pick up_fork message to the corresponding channel (pred-
icate pick_up_fork/1).

13



A point that requires a bit more clarification is the sit_down_at_table/1
predicate, that provides synchronization with the footman process. The send-
ing end of the channel sit_down is owned by different philosopher processes
during the execution of the program. To obtain this end, i.e. permission to sit
down, the channel must not be owned by another (philosopher) process. If the
channel at the time of the call is owned by a different process, then the call
to open_channel for_send/2 blocks until the channel is released by the pro-
cess that owns it (i.e. a close_channel/1 call by that process). This blocking
behavior is indicated by the value scheduled to the second argument of the
open_channel for_send/2 predicate. Since there is only one such channel in
the system, only one philosopher process can ask assistance from the footman
to sit at the table, and thus the latter can decide to grant permission depend-
ing on the number of guests at the table. Obviously, the get_up_from_table/1
predicate behaves in a similar manner.

%%% Top level predicate for footman process

footman_top_level:- open_channel_for_receive(sit_down),
open_channel_for_receive(get_up),
footman(0),
close_channel(sit_down), close_channel(get_up).

%%% Main loop for the footman process
footman(0) :- receive(sit_down,_N), footman(1).

footman(4) :- receive(get_up,_N), footman(3).

footman(Philos):- N =< 3, N >= 1,
receive([sit_down,get_up]l,_,WINNER),
on_table (WINNER,Philos,NewPhilos),
footman(NewPhilos) .

%%/ Defines the number of philosophers that sitting at the table
on_table(sit_down,Philos,NewPhilos):- NewPhilos is Philos + 1.

on_table(get_up,Philos,NewPhilos) :- NewPhilos is Philos - 1.
Fig. 8. Dining Philosophers in CSP-1I : Footman process

Finally, figure 8 presents the Csp-11 code for the footman process. The argu-
ment of the footman/1 predicate (main process loop) represents the philoso-
phers that are currently sat on the table. Its operation is rather simple: when
there are no philosophers sitting down (clause footman(0)), the process can
only accept a message from the sit_down channel, i.e. a philosopher can only
sit at the table, whereas when there four philosophers sitting down, it can
only accept a message from the get up channel (clause footman(4)), i.e. a
philosopher can only leave the table. In any other case (N € [1,2,3]) it can
receive messages from any of the two channels, increasing or decreasing the
number of philosophers on the table accordingly.
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3.3 TCP/IP Communication

As a natural extension of the original inter-process channel concept, the ex-
ternal communication conceptually consists of message streams. In order to
facilitate speed-up of external communication, asynchronous message passing
is introduced as an option. The send operation in this case still remains block-
ing but the condition for continuing execution is the availability of sufficient
buffer space instead of the commencement of the matching receive opera-
tion. For the Prolog programmer the communication environment appears as

O‘~~.__ghannel ac

channel_d¢” /

/channel_cd

channel_d¢’
//channel_cd

CSProlog-1I Application

'CSProlog-1I Application

{ 7777777777777 N

——————————————— » Inter-process Communication

g TCP/IP Communication

7 channel_cd

\

\

\

| ‘

‘ channel_t;a
\

l

CSProlog-II Application

Fig. 9. A Csp-1I community

a homogeneous address space (community) in which all fellow applications
(partners) are accessed via channel messages (Figure 9). The mechanism for
connecting channels to other Csp-11 applications introduces two new notions:
the port and the connection.

A port represents an incoming message substream. This entity should not be
confused with the well known TCP/IP port. A CSP-II port is the entry point
of all incoming messages for the local application. It is explicitly created by a
corresponding predicate and has a local channel associated with it at the time
of its creation. The application receives all messages through that channel, as
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shown in Figure 10. A parameter set during port creation determines the size
of the message buffer so that asynchronous communication can occur.

A connection is the representation of an outgoing message stream. It is also
explicitly created by the programmer and is associated with a partner’s port
to where it forwards all outgoing messages that it receives from a specific
local channel of the sender application (Figure 10). All previous information
is defined at the creation of the connection, including a parameter indicating
the number of messages stored in the connection buffer. In order to be able to

N -

r CSProlog-1I Application

‘ (...other processes)
» (...other processes)

L connection -

outgoing_channel

——————————————— » Inter-process Communication

> TCP/IP Communication

Fig. 10. Connection Port Mechanism in Csp-1I

communicate with a partner, a configuration process has to be performed using
a special built-in predicate. Though this, all necessary network information of
the partner is defined, i.e. its name, port, IP address or hostname, IP port
it listens to, etc. Although this operation requires detailed knowledge of the
partner’s network information, it provides a more versatile connection schema.
We are currently considering the idea to introduce some sort of naming service
in a future version, however this will not require modifications of the current
communication model, since it will be added in the form of a simple Prolog
library.

An important feature of the Csp-11 TCP/IP communication is that changes
in the status of a partner is immediately known to all other partners via the
generation of specific network related events. Thus the user can define a real
time process that captures all such events and adjusts the behavior of its
application.

Applications can also establish communication with a non-Prolog application
through an appropriate mediator, that handles all data and protocol con-
versions. Currently Csp-11 supports an ASCII mediator for plain text com-
munication and one for communication with a specific network management

platform (HNMS).

Csp-11 has been successfully employed in the development of a distributed
expert system for the management of a TCP/IP based WAN [37,38].
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4 (Cspcons: Extending the Csp-11 Framework for Constraint Pro-
gramming

Although Csp-11 offered an adequate set of networking facilities for imple-
menting distributed applications, it lacked programming facilities for CP, that
would extend significantly its scope of applications. This fact was the main mo-
tivation behind extending appropriately the original system, an effort that re-
sulted to the Communicating Sequential Prolog with Constraints (CSPCONS)
system. The latter inherits all the advanced networking features, presented in
section 3 as well as providing appropriate libraries for constraint programming.

There were two design choices toward this extension: either extend the sys-
tem to support attributed variables that will enable the implementation of the
constraint solver, or extend the C language interface appropriately and pro-
vide constraint solvers as C/C++ libraries. The latter approach was adopted
for two reasons. The first concerns the fact that an excellent foreign language
interface already existed in the Csp-11 system, that facilitated greatly the
development of the new solver interface, and the second is that under this
schema the system could be easily integrated existing industrial strength con-
straint solvers available in the market. The latter plays a significant role in
the adoption of CSPCONS in real world applications.

The rest of this section provides a brief overview of the extensions that were
considered necessary for the development of the CSPCONS system.

4.1 Qverview of the CSPCONS System

The CSPCONS system consists of two main subsystems: the solver and the core.
The solver is responsible for maintaining the constraint store and performing
any constraint related tasks, i.e. is responsible for storing domain variables
and the set of constraints as well as for constraint propagation. The core
is the extended CspP-1I system that keeps track of the active instances of
the different solvers, dispatches requests originated by the Prolog program
to the appropriate solver instance, and performs other system-related tasks,
including all normal Prolog predicate calls.

In general, each CSPCONS process can have active instances of several dif-
ferent solvers, as for example an FD and a Linear solver. However the set
of constraints and domain variables maintained by instances of a solver that
belong to different processes are independent of each other, resulting to a
communicating sequential CLP system.

In order to support the above model, CsSPCONs introduced to the original
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Csp-11 system a new set of built-in predicates, an appropriate C interface
between the core and the solver and a new variable type, named constraint
variable.

The CLP-related predicates that are defined in the new built-in predicate
set are classified into three groups. The first group is concerned with the
term type system extension, i.e. their use is the identification of constraint
variables. The second group consists of the solver-independent predicates used
for obtaining information about the installed solvers and selecting a particular
solver. The third group consists of the "normal” interface predicates used for
the introduction of new domain variables, constraints and for labeling. The
predicates in the third group require cooperation between the core subsystem
and the particular solver that is currently selected.

For achieving the solver-core cooperation a dedicated C language interface
was implemented as an extension to the original Csp-1I system. Under this
schema, solvers are implemented in the form of linkable C libraries. Each solver
exposes to the core a table containing pointers to specific functions (entry
points). These entry points are mainly implementations of the normal interface
predicates, i.e. a CLP related predicate call corresponds to an entry point. For
example the clp_constraint/1 predicate used to introduce new constraints
in a program corresponds to the constraint () entry point function. However
the implementation of the entry points depends on the use of a set of functions
provided by the core, called callback functions, that provide various services
such as constraint variable creation and removal, introduction of new trail
points in the backtrack stack, etc.

Finally, constrained variables are introduced as a new term type in the original
set of term-types. They are always associated with a corresponding internal
variable of the solver. Their creation and removal is the responsibility of the
solver, who requests it by appropriate callback function calls from the core.
Upon unification of a constraint variable to a term in a Prolog program three
cases can occur, depending on the state of the variable:

e If the unification involves a constraint and a normal unbound variable then
it simply succeeds and the latter simply refers to the former in the compu-
tations that follow.

e If the variable is fixed to a specific value then unification is handled by the
core. The solver in this case is called by a special entry point only to inform
the solver about the status of the variable and its value if it is fixed.

e If the variable is being unified with another constraint variable or any other
term then the unification is the responsibility of the solver who treats it as
a newly introduced equality constraint. The solver in this case is called via
an appropriate entry point and must either add the new constraint to the
store if it is consistent or simply reject it, yielding a unification failure.
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4.2 The CsPCONS FEzecution Model

The solver subsystem is initialized when the first constraint predicate call is
issued by the user program in the process. The solver instance starts with an
empty system of constraints and during forward execution, new constraints
are incrementally added to the model. The solver evaluates the resulting con-
straint set and if it is consistent, it accepts the additions and the call succeeds,
otherwise rejects them, i.e. the call fails. If the predicate, which passes the new
constraint succeeds, then all unbound variables occurring in the passed con-
straints become constrained variables and their behavior during unification is
determined through a solver-core cooperation.

If the Prolog program backtracks over a CLP-predicate call or a unification
of a constraint variable, the solver must revert to the state that was in ef-
fect before that call. Thus the state of the constraint store maintained by a
solver instance must be synchronized with the state of the evaluation stack
of the Prolog host process. Any change in the constraints store caused by the
evaluation of a CLP-predicate or a unification involving constrained variables
must be "undone” when the interpretation backtracks over the predicate that
originated the change.

In the CSPCONS system there are two trail stacks: the core and the solver trail.
The first is used by the Prolog interpreter itself for registering normal variable
bindings that should be undone during backtracking, while the solver trail is
used for registering changes in the constraint store. To achieve synchronization
between these two areas the interface offers the ability to introduce identifiers
of the solver trail to the core trail. On backtracking a special entry point
function (backtrack()) is invoked and an identifier is passed back to the solver
as argument to this function. The identifier indicates the appropriate stack
level that the solver should backtrack to. Any necessary actions for restoring
the state of the constraint store are organized based on this information.

The model offers independence of the code concerning the constraint han-
dling and provides the means to easily extend the system to support any
constraint domain. Currently CSPCONS supports a finite domain solver while
there also exists an experimental linear equations-disequations solver. The Fi-
nite Domain solver is presented in more detail in the next section, since this
constraint system has attracted more interest in the CP community mainly
due to its numerous industrial applications.
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4.8 The Finite Domain Solver

The original version of the finite domain solver was based on the Macworth’s
AC-3 algorithm [39] for simplicity for handling binary constraints. Since the
latter is not considered state of the art in consistency techniques, in the current
version it was replaced by a constraint-based version of the AC-2000 proposed
in [40]. Higher order constraints are handled by a bounds consistency algo-
rithm, for efficiency reasons.

The FD solver supports constraints of the form: x € {ny,ns,..,n,} and
exp; R expy where {ny,na,..,n,} is a set of natural numbers, R € {=,#,<
,>,>,<} and exp;, exp, are linear expressions on constraint variables. Con-
straints can be posted through the clp_constraint/1 predicate as shown in
the following examples:

clp_constraint([X in [1..10], Y in [1..1011),
clp_constraint ([3*X < 2xY +10]),

In order to provide syntactic compatibility with well known CLP languages
such as SICStus and ECLiPSe constraints can be defined in the using the
infix operators # =, # <,# <=,# >,# >= and :: /2, the latter for domain
creation. As usual the solver provides a library of predicates for labeling based
on heuristics, optimization, etc. For example, the code that follows defines a
very simple problem of four variables and one equation on them:

X :: [1..10], Y :: [1,2,4],
Z :: [1..30], W :: [1,2,3..10],
X+3*xY#=7Z-W, labeling( [X,Y,Z,Wl),

The implementation has been tested on a variety of benchmarks, including the
well-known cryptarithmentic and alpha problems, golomb rulers, N-Queens,
etc. and has performed adequately. It should be noted however the system
performance cannot be compared with systems such as ECLiPSe or SICS-
tus that employ far more sophisticated constraint handling algorithms. The
advantage of the CSPCONS system is that it offers an excellent platform to
model and test distributed constraint based applications, as it is going to be
demonstrated in the next section.
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5 Distributed Job-shop Scheduling in CSPCONS

Job-shop scheduling (JSS) is one of the most popular scheduling problems
and has attracted significant attention in the past decades. It has been long
used as a benchmark for the evaluation of numerous and diverse optimization
techniques.

More formally, the n X m job-shop problem involves n jobs Ji, Js,...J, and
m machines or processors My, Ms,...M,,. Each job J;,1 < k < n consists
of [ uninterrupted operations Oy, Ok, . .. Ok, upon which a precedence con-
straint holds, i.e. they have to be scheduled in a predetermined order (O
before Oyg, Oy before Oys, etc). Each operation Oy; has a non-negative dura-
tion d(Oyg;) and requires processing by a specific machine for its completion.
The machines obey a capacity constraint limiting the operations they can
simultaneously process to one. The problem’s objective is to find the start
time of each operation start(Oy;), such that all constraints are satisfied and
the makespan of the total schedule is minimum. The latter is defined as the
maximum completion time of all jobs, i.e:

makespan = mazx(start(Og) + d(Or)),0 < k <n

A great number of techniques, such as constraint programming, genetic algo-
rithms, simulated annealing, local search, etc have been employed to tackle
the problem yielding different results in terms of time or solution quality. A
review of the techniques employed to solve the JSS problem can be found in
[41].

The aim of this section is not to provide a novel approach to the solution
of the JSS problem, comparable to the already proposed techniques, but to
demonstrate the the suitability of the CSPCONS system in rapid prototyping
and testing of distributed algorithms. In that direction, the rest of this section
presents details of two distributed algorithms for solving (sub-optimally) the
problem. The two algorithms differ in the way agents cooperate for available
time slots to schedule their operations.

5.1 Agent Based Version

In the first algorithm, we have chosen to model the JSS problem as a collection
of cooperating agents, each responsible for a job in the problem, that negotiate
on the use of resources (Agent Based Version - ABV). The main idea behind
the above modeling is rather simple: agents enforce precedence constraints on
the operations they are responsible, generate proposals on machine utilization
and then resolve between them potential conflicts on the use of resources.
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For each Operation O; in Job do
1. Generate a proposed booking for O; on machine m
2. Broadcast booking to other agents.
while there is not a final booking for O; do
3. Collect bookings (proposed-+final) from other agents on machine m.
4. Insert any constraints derived from final bookings
on the machine.
5. Based on the received proposed bookings decide whether to commit to a
start time for O; or to generate a new proposed booking.
taking into account the constraints derived from the new bookings.
6. Broadcast the new booking.
endWhile
endFor

Fig. 11. Agent Scheduling Loop

Under the above schema, all agents impose precedence constraints on the
operations of their jobs, using the CSPCONS constraint primitives. Intra-agent
conflicts, i.e. overlapping requests for scheduling an operation on the same
machine are resolved by message exchange and a dynamic priority schema
that is based on the current minimum makespan of the agents’ jobs.

Agents communicate by exchanging booking messages (or simply bookings), i.e.
allocation of an operation to a machine at a specific time slot. Bookings con-
tain information about a specific operation, such as agent and operation IDs,
start time, duration, machine required, status etc. and are classified according
to their status to proposed and final. Proposed bookings represent requests
for scheduling an operation on a specific machine starting at the time indi-
cated by the booking. Final bookings on the other hand indicate commitment,
i.e that the corresponding operation is scheduled as indicated. Bookings are
broadcasted to all agents in the application, thus each agent is aware of the
proposals and commitments of all other agents.

The execution cycle of each agent is shown in Figure 11. Each agent generates
initially a proposed booking indicating to all agents in the application not
only its desired minimum start time and machine for operation O; but also
the minimum makespan for the job if operation O; is scheduled as requested.
In the step that follows it collects all available information (bookings) on
the utilization of the specific machine. Final bookings on the machine are
used to produce new constraints, i.e. the unscheduled operation O; has to be
performed after the end of any operations already booked. Proposed bookings
are used to decide whether to commit to a start time or simply generate a
new proposal. This decision is based on a dynamic priority decision strategy:
priority is given to operations with the maximum job makespan, reflecting
the simple (polite) rule “grant priority to agents (jobs) that end later”. Thus
the agent that has the greater makespan has priority over all other agents
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and generates a final booking, that it broadcasts to the community. All other
agents simply take into account existing bookings and proceed by generating
a new proposal. The application terminates when all agents have found valid
schedules for their operations.

5.1.1 Implementation

A straightforward approach in implementing the algorithm would be to model
each agent as a normal CSPCONS process, that communicates over channels
with other agents. However, intra-process channel based communication is
synchronous, which is prone to deadlocks, thus requires a more sophisticated
design. To avoid such situations we had to introduce asynchronous communi-
cation between processes, by simply adding a real-time process to each agent,
as shown in figure 12. The latter is responsible for handling all communica-
tions to and from the agent. The introduction of the real-time communication

Local Channel Local Channel

Local Channel

Fig. 12. Agents in the Job-shop scheduling Application

process facilitated greatly the implementation of the algorithm. Under this
new schema, agents communicate by generating events that carry booking in-
formation. The role of communication process is twofold: a) it is responsible
for accepting all agent bookings and broadcasting locally generated bookings
and b) maintaining all machine utilization information based on the received
booking messages. The main agent process that is responsible for schedul-
ing the job, simply collects from its corresponding communication process, all
necessary bookings using channel based communication. The latter is again
initiated by appropriate event generation, this time by the main agent process.
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5.2 Machine Based Version

In the second version, the utilization of each machine is controlled by a machine
agent (Machine Based Version - MBV). In this case job agents do not exchange
bookings, but instead they submit requests for scheduling an operation to
the corresponding machine agent (figure 13). The latter collects all pending
requests at the specific time, decides upon winning operations, i.e. operations
to be scheduled next and informs the interested agents. Non-winning agents
are just informed that they have to reschedule their operations after the end
of the winner operations and of course to re-submit a booking request taking
into account the new constraint.

Events R
— — ;;

Local Channel :

/ Ev&nts
/ \

/ Events

~ i
Events H Local Channel

Fig. 13. Job and Machine Agents in the Distributed JSS Application

Machine agents maintain information about machine utilization on which base
their decisions. An improvement concerning the first version is that the ma-
chine agent initially tries to schedule any request in available idle intervals (i.e.
gaps in the schedule) of the machine. From the set of requests that cannot be
satisfied in the previous step, a winner operation is selected, using the same
rule described in section 5.1: “grant priority to agents jobs that end later”.
One interesting aspect of the second version is that job agents are unaware of
the overall schedule, thus all job information remains private.
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5.2.1 Implementation

The machine agent is modeled as a real-time process that communicates with
job agents via events, that carry all necessary information (figure 13). A point
worth mentioning is when does the agent decide that it has received all cur-
rently pending request messages concerning its resource utilization. To avoid
complex algorithms, the agent simply assumes that it has received all pending
requests when there are no more messages over a certain period of time. The
length of this time period affects the overall performance of the algorithm
and possibly the solution quality, i.e. waiting for longer intervals introduces
significant delays but allows to process more requests at a time. However, it
does not affect its soundness since all requests will eventually be processed.

This simple approach is elegantly implemented by timer events, that “wake”
the process up when no other event has occurred for a certain amount of
time (see Section 3.1). To demonstrate the simplicity of implementing such
behavior in CsPCONS, the top level predicate of the machine agent is shown
in Figure 14. In that the get_event/2 built-in collects any events from the
queue of the process.

%% Updates the internal DB about job agent requests.
%% Message interception.
machine_agent (N) : -

get_event (machine (N) ,BOOKING),

updateDB (BOOKING) .

%% No more messages to receive so try to do something usefull.
machine_agent (_) :-
get_event (idle( )),
existRequests, % check if there are any requests pending.
answerRequests.

%% At idle times, where there is nothing to answer do nothing.
machine_agent (_) :-
get_event(idle(.)).

%% Stop event received - Terminating Execution.
machine_agent (N) : -

get_event (endM(N)),

I,fail.

Fig. 14. Top-level Predicate for Machine Agent
The implementation of job agents does not differ significantly from those in the
ABYV version. The only change is that communication is limited to the machine

agents and that the decisions about the operation allocation is delegated to
the corresponding machine agent.
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5.8  Ezxperimental Results

We have tested the implementation on some well known instances of the job-
shop scheduling problem, namely the Fisher - Thomson 6x6, 10x10 and 20x5
[42], also known as mt06, mt10, mt20.

The results indicated in table 1 present the makespan (in time units) and
the time consumption of the schedules produced by the two versions of our
algorithms compared to the best known solutions. Column BKS presents the
makespan of the best known solution reported in the literature, where as
columns ABV and MBYV present the makespan of the Agent Based Version
and the Machine Based Version respectively. For each problem the average
execution time is listed in parentheses in seconds. The table also provides
details about the number of jobs and machines in each of the problems.

In all cases the solution obtained by the algorithms were not optimal, however
this was not our aim. The algorithms could be extended in a number of ways
to achieve an optimal solution; for example a local search algorithm could
be applied after the first solution to increase the quality of the latter, search
could be re-initiated with an upper bound on the solution quality, etc. The
difference in the solution quality between the Agent Based version and the
Machine based version is due to the fact that the latter tries to schedule
operations in available idle intervals of the machine.

Table 1
Makespan of the schedules produced by the two approaches (in time units). The
table also lists the average execution time of the algorithms for each problem.

Problem Jobs Machines BKS ABV MBV
mt06 6 6 55 76 (2.2 secs) 60 (1.7 secs)
mt10 10 10 930 1245 (410 secs) 1186 (390 secs)
mt20 20 5 1165 1675 (930 secs) 1670 (870 secs)

The time consumption of the algorithm is rather high when compared with
local search techniques, or dedicated constraints (such as the cumulative con-
straint ) used in current CLP systems. However, providing a time efficient
solution to the problem was not among the aims of this work; the algorithm
is rather naive and its presentation servers only as an example of how dis-
tributed CLP applications can be implemented easily given the programming
facilities of Csp-11 . Multiple approaches can be followed to improve this as-
pect of the algorithm. For example a combination of constraint solving and
local search similar to the one reported in [43] could improve significantly the
efficiency and the solution quality of the algorithm. However, the execution
time of the current algorithm could be reduced by providing a version that
runs on multiple hosts as it will be shown in the following section.
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To stress the suitability of the CspcoNs platform for developing and test-
ing such applications it should be noted that the complete programs of both
versions are no more than 400 lines of Prolog code each.

5.4 Distributed Machine Based Version

The observant reader would have noticed that all the agents in the two versions
of the problem are processes of a single CSPCONS application running on a
single host. To test futher the platform and possible gains in efficiency obtained
by a parallel /distributed version of this simple program we have developed a
multi-host version of the machine based version of the algorithm and run a
number of experiments.

Deriving the multi-host distributed version from the version presented above
was straightforward, since it simply required minor modifications to the com-
munication processes so that instead of generating an event, they simply
broadcast a message over an established TCP/IP channel. Such a modifi-
cation, did not affect the implementation of the agents themselves; it simply
involved adding a few necessary predicates to the real-time processes. This
presents another advantage of the CspCcONS platform: distributed algorithms
can be developed and tested in a single host and latter easily ported to a
network environment.

In the distributed implementation each agent and machine is an independent
Csp-11 application, thus, depending on the problem there are 12, 20 and 25
agents running in parallel to solve the problem. All communication takes place
over TCP/IP channels. We have tested the new version on a network of four
hosts each running a number of CspP-11 process. In our experiments the pro-
cesses were evenly distributed to the hosts and all measurements concern wall
time. Our experiments involved running the same problem on up to four hosts
with varying the delay (timeout) that each machine agent waits for collect-
ing messages (see section 5.2) from 10 to 200 msecs. The latter provides an
evaluation of the impact of this parameter to the total execution time of the
algorithm.

The results obtained for the ft06 problem are presented in figure 15. As shown
from the graph, the execution time of the algorithm does not improve greatly
as the number processors increases, mainly due to the reason that network de-
lays introduced by the TCP /IP message passing introduce significant overhead
for the specific problem. An important observation here is that the algorithm’s
performance is greatly influenced by the timeout, since the later is comparable
to the execution time of the algorithm.

A similar set of experiments was conducted for the ft10 problem. The results
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Fig. 15. Experimental results for the ft06 Problem.

are shown in figure 16. As it can be seen from the graph in this case the
speedup obtained is substantial and the algorithm has a good scale up. In
this problem, the timeout parameter does not have a significant impact on
the overall performance, since the timeout is far less than the execution time
of the distributed system. Similar to this results were obtained for the ft20
problem.
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Fig. 16. Experimental results for the ft10 Problem.
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6 Conclusions and Future Work

The CsPCONS language, presented in this paper, offers a suitable platform for
rapid prototyping, testing and developing of any DCSP application. Program-
ming through the use of communicating sequential processes and constraints
in a logic programming environment can successfully address the issues of
easily developing applications that require agent based program distribution
and communication. As demonstrated in the job-shop scheduling examples, in
such an application each agent can be a collection of independent CSPCONS
processes that exchanges messages with other agents in order to achieve a
global consistency.

Different constraint solvers can be added in the form of C (or C++) linkable
libraries. This results to an extensible language that can be tailored to the
application requirements and also a great platform for testing new constraint
algorithms.

We are currently investigating the implementation of some DCSP algorithms
as for example those reported in [26,27] and in [30]. Such implementation might
require both further development of the constraint solver or the introduction of
new programming facilities. One of the main issues that has to be addressed is
the definition of necessary components, which would allow the programmer to
exploit these algorithms in an application without having to implement them
again. Our ambition is to develop a framework that will relieve the programmer
of the burden to explicitly encode all the above and just concentrate on the
program development.

Possible application areas of the CspPCONS system include distributed plan-
ning and scheduling. Our immediate plans also include the development of a
distributed scheduling application for university course scheduling, that will
fully test the potential of the current implementation of the language.
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