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Abstract

Distributed constraint satisfaction has drawn much attention in the
past years, with a number of algorithms proposed to tackle the problem.
Research in the area has followed two directions: distributed search tech-
niques and distributed filtering techniques. This paper presents a new
distributed filtering algorithm, named Distributed Singleton Arc Counsis-
tency (Dis-SAC), which is based on the singleton consistency algorithm.
Dis-SAC is a parallel coarse grain filtering algorithm aiming at improving
the performance of singleton consistency by distributing the work to be
done to a number of agents. The current paper presents the basic idea
behind the algorithm and two versions of it that employ different com-
munication policies along with experimental results obtained on a set of
random binary CSP problems.
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1 Introduction

Many problems appearing in diverse areas like Artificial Intelligence, Opera-
tional Research, design, etc, can be modeled as constraint satisfaction problems
(CSP). Informally, a CSP problem consists of finding an assignment of values to
variables, each ranging over a finite domain, such that this assignment is con-
sistent with a set of constraints imposed on the variables. CSP’s are NP-hard
problems, thus finding a solution using simple backtracking is usually affected
by thrashing, i.e. repeatedly failing search for the same reason.

An approach to avoid thrashing is reducing the search space by filtering out
inconsistent values, i.e. those that could never participate in a valid solution.
This pre-processing transforms the original problem to an equivalent one, that
has the same set of solutions but a smaller search space, allowing hard problems
to be solved in reasonable time. The latter is achieved by some local consistency
algorithm that ensures that each value in the domain of a problem variable
that violates a constraint is removed. The simplest form of local consistency is



node consistency that removes values from variable domains that violate unary
constraints. The most common and most studied form is arc consistency that
performs removals by examining binary constraints on the problem variables.
Research in the field has resulted to quite a few local consistency algorithms,
such as the AC3 (Mackworth 1977), AC4 (Mohr and Henderson 1986), AC5
(Van Hentenryck, Deville, and Teng 1992), AC6 (Bessiere 1994), NIC (Freuder
and Elfe 1996), LAC (Schiex, Regin, Gaspin, and Verfaille 1996) algorithms,
to name a few that have been proposed in the literature in the past decade.
The above enforce different levels of consistency at a different computational
cost. A review of various consistency algorithms can be found at (Debruyne
and Bessiere 2001).

However the application of filtering techniques introduces overhead in search-
ing for a solution, which in small problems can be significant, sometimes even
comparable to the cost of a brute-force solution. On the other hand in hard
problems, the benefits of reducing the search space are considerable, making
their application a choice of wisdom.

Singleton Consistency (Debruyne and Bessiere 1997) is a class of filtering
methods that removes more inconsistent values than most local consistency
techniques. Even though it is identified as one of the most promising approaches,
its time complexity is high posing an obstacle to its application.

One way to overcome this disadvantage is to reduce the overall execution
time through distribution over a network of agents. This approach is further
supported by the availability of a large number of machines connected through
some network and could provide an elegant solution to solving hard problems.

This paper describes the Distributed Singleton Arc Consistency algorithm
(Dis-SAC), a parallel coarse grained variant of the singleton arc consistency
algorithm (SAC) and investigates its benefits. Two versions of the algorithm are
presented that differ only in the policy employed to communicate inconsistent
values. Both versions aim at improving the time efficiency of the sequential
version by execution in a distributed memory multiprocessor environment.

The rest of the paper is organised as follows. Section 2 presents research
in the area of distributed CSP’s. Section 3 describes in brief the singleton
arc consistency algorithm. Section 4 presents the two versions of the Dis-SAC
algorithm in detail. Section 5 presents experimental results on a network of
computers. Finally, section 6 concludes the paper.

2 Distributed Constraint Satisfaction

A constraint satisfaction problem P consists of:

e 3 set of variables X z1,%s,...,z,

e 3 set of domains D each associated with a variable Dq, Ds,...,D,, i.e.
z; € D;

e 3 set of constraints C that impose restrictions on the values that the
variables can take. Each constraint Cy(z1,Zr2,---,Tkm),m <= n is a



predicate on the Cartesian product Dgy X Dga X ... X Dy, that is true
on a subset of the product, indicating that an assignment that belongs to
the subset is valid under the constraint.

In a distributed setting the constraint problem variables and/or constraints
are distributed among a number of communicating agents. Agents cooperate in
order to find the solution to the overall problem.

2.1 Related Work

Distributed constraint satisfaction has long been the topic of active research
and a large number of approaches that address the problem have been reported
in the literature. Currently the algorithms proposed in the literature can be
categorised into two classes: those that perform filtering in a distributed manner
and those that are concerned with distributed search.

The first class of approaches involves distributed /parallel versions of sequen-
tial arc consistency algorithms. Earlier work in the field involved two massively
parallel versions of the AC-4 algorithm proposed by P. Cooper and M. Swain
(Cooper and Swain 1992).

The Dis-ACY4 algorithm proposed in (Nguyen and Deville 1998), is a coarse-
grain distributed version of the AC4 algorithm. According to it, the problem is
distributed by dividing the variables to a number of agents (workers), which run
the same code but on different data. Each agent initially builds the local data
structures required by the AC-4 algorithm and then inconsistencies detected
are treated. Inconsistencies are either produced locally by the agent or by
another agent and are received by a message passing mechanism. The algorithm
terminates upon detection of silence in the network.

In (Hamadi 2002) the author proposes an alternative distributed arc consis-
tency algorithm, called DisAC-9 with minimal message passing which is based
on the variation of the AC-6 (Bessiere 1994) consistency algorithm. As in the
previous algorithm agents are assigned a set of variables and start by comput-
ing inconsistent labels of that set. However not all inconsistent labels detected
are broadcasted, but only a selected set of these that induce deletions to the
domains of the receiving agents; thus the number of messages broacasted is
minimised.

Y. Zhang and A. Mackworth (Zhang and Mackworth 1992) present three
parallel and distributed algorithms for computing consistency by formulating a
CSP as a dual network, in which constraints correspond to nodes and variables
to arcs. These algorithms were tested on a transputer based machine.

More recently, a set of distributed constraint satisfaction algorithms based
on the notion of chaotic iteration (Apt 1997; Apt 1999; Apt and Monfroy
2001), have been proposed (Monfroy 2001; Monfroy and Réty 1999). Informally,
chaotic iteration enforces local consistency by using a set of domain reduction
functions (drf) that are applied until no further modifications occur in the vari-
able domains. In a distributed setting, each agent manages a subset of the
problem (drfs and variables) an uses asynchronous message passing to consume



and communicate changes in their local domains from function application. The
work described in (Monfroy 2001) describes a generic distributed chaotic itera-
tion algorithm and its modelling in the Manifold language, an implementation
of the Idealized Worker Idealized Manager (IWIM) (Arbab 1996), a commu-
nication model that enables the construction of complex dynamic coordination
protocols. In this work each drfis mapped to a worker process and each variable
in the problem to a coordination variable and detection is easily implemented
using the facilities of the Manifold language.

The second class of algorithms performs distributed search using a set of
agents and a message passing scheme. For example in (Yokoo, Durfee, Ishida,
and Kuwabara 1998; Yokoo and Hirayama 2000) authors propose an asyn-
chronous backtracking algorithm (ABT) and its modification, the asynchronous
weak-commitment search (AWC), that efficiently solve distributed constraint
satisfaction problems. Under the ABT algorithm, variables are assigned to
agents that exchange messages concerning value assignment (0k? messages) or
inconsistencies (nogood messages) until a solution is reached. An ordering is
imposed on agents that defines the direction of message exchange. The asyn-
chronous weak-commitment search (AWC) introduces to the above algorithm
two new features: dynamic agent ordering and the min-conflicts heuristic.

In the Distributed Backtracking algorithm (DIBT), introduced in (Hamadi,
Bessiere, and Quinqueton 1998), a different approach is followed. Agents com-
pute their position in a total ordering of the network such that each has a set of
parent and children agents. Parent agents broadcast through messages values
to their children, that try to determine a consistent value for their variables. If
they fail to do so, backtracking is initiated to parent agents. The Distributed
Forward Checking algorithm (DIFC) (Meseguer and Jimenez 2000), follows the
DIBT approach to DCSP, but is more focused on privacy aspects of distributed
constraint satisfaction. The algorithm is based on the idea that agents commu-
nicate the effects that their value assignment has on other agents’ domains and
not their own values. Finally, the Distributed Dynamic Backtracking algorithm
(DisDB) (Bessiére, Maestre, and Meseguer 2001) combines ideas from ABT and
DIBT, namely nogood communication of the former and the no new relation
introduction between the agents of the latter.

2.2 OQur Approach

The Dis-SAC algorithm described in this paper is closely related to the DisAC-
4 (Nguyen and Deville 1998) and DisAC-9 (Hamadi 2002), in the sense that
it presents a distributed version of a local consistency technique, aiming at
improving the execution time of the corresponding sequential algorithm. The
proposed algorithm is very similar to the DisAC-4, with the difference that
a singleton arc consistency algorithm (SAC) (Debruyne and Bessiere 1997) is
employed for detecting and treating inconsistencies. Thus the benefits expected
from the application of the algorithm are greater, since SAC enforces a stronger
consistency than any arc consistency algorithm. The same argument holds for
the distributed chaotic iteration algorithm; furthermore the rule based approach



to constraint programming that is used in the chaotic iteration algorithm could
be impractical when considering problems with large finite domains, due to the
large number of rules (drfs) that have to be generated and managed.

A major advantage of the Dis-SAC algorithm is simplicity. The distributed
version of the singleton consistency algorithm has very little modifications with
respect to the sequential one, however the speed up obtained is significant. To
our knowledge no other work has yet investigated the benefits of distributively
executing a singleton consistency algorithm.

3 Singleton Consistency

Singleton Consistency is a class of filtering techniques that is based on the fact
that for each consistent value d; of a variable z;, the subproblem obtained by
restricting the domain D; to d; is consistent (Debruyne and Bessiere 1997).
Thus if the subproblem is found to be inconsistent by the application of some
local filtering technique, such as arc consistency, then it is safe to remove the
value in question from the domain. The algorithm is shown in figure 1.

SingletonAC(P) begin
P + AC(P);
repeat
change « false;
for X; € X do
for d; € D; do
if AC(P|p;={4;}) is inconsistent then
D; «+ D;\ {di};
change < true;
propagateChanges(d; );
endif
endfor
endfor
until change = false;

end

Figure 1: Singleton Arc Consistency Algorithm

The algorithm iterates through all domain values each time restricting a do-
main to a value and enforcing some AC algorithm to detect domain wipe-outs.
In such a case the value in question is removed from the domain of the vari-
able and the effects of its deletion are propagated. As stated in (Debruyne and
Bessiere 1997) any consistency algorithm can be employed to detect domain
wipe-outs when achieving arc consistency, although a lazy approach, such as
the one described in (Schiex, Regin, Gaspin, and Verfaille 1996) (LACY), is suf-
ficient. The worst time complexity of the algorithm depends on the complexity
of the arc consistency algorithm used in each step.



Singleton consistency enforces stronger consistency than other local tech-
niques, i.e. removes a larger set of values however the cost of applying it, even
as a single preprocessing step is high. A detailed theoretical and empirical study
of the benefits of singleton consistency can be found in (Prosser, Stergiou, and
Walsh 2000). In the same work, authors also demonstrate the benefits of em-
ploying a restricted form of SAC which goes through the variables only once
and thus achieves a lesser level of consistency.

4 Distributed Singleton Arc Consistency

The motivation behind this work is to reduce the execution time of SAC, by
dividing the work that has to be performed to a number of agents. SAC seems to
be ideal for such distributed execution, since each step of enforcing consistency
on the reduced variable domain can be done independently.

The principle behind the algorithm is rather simple. Agents in the commu-
nity have a “complete” view of the problem, but enforce singleton consistency
to a subset of the domain variables. Changes in the domains that are detected
by the consistency algorithm are broadcasted to all agents participating in the
society. Fach agent that receives a set of deleted values, removes them from its
local copy of the store and re-initiates singleton consistency check again. Ter-
mination is detected upon quiescence in the network, indicating that there are
no more deletions in the domains of the problem’s variables. At the end of the
application of the filtering algorithm each agent’s view of the problem is identi-
cal, thus any of them can be used to continue searching for a solution or any of
the distributed search algorithms described in section 2.1 can be employed to
find the solution distributively.

The communication policy that determines when inconsistent values de-
tected are broadcasted can affect the number of messages transmitted over the
network and potentially the efficiency of the algorithm. There are two alterna-
tives concerning this issue; broadcast values either lazily or eagerly. In the lazy
version of the algorithm communicating inconsistencies is postponed until no
further changes can be detected in the subproblem that the agent is responsible
for. In the eager version inconsistencies are communicated as soon as they are
discovered. Each of them yields different benefits; the former minimises the
number of messages broadcasted over the network at the risk of increasing the
idle time of some agents, while the latter although it avoids such a risk it might
introduce delays for large problem instances in low bandwith networks.

The sections that follow present the two versions of the algorithm: section
4.1 presents the message passing model common to both algorithms; section
4.2 describes in detail the lazy-Dis-SAC algorithm while the eager-Dis-SAC
algorithm is briefly described in section 4.3 since it presents minor differences
with the former. Finally section 4.4 presents how termination is detected among
the agents participating in the community, commonly used in both versions.



4.1 Message Passing Model

For the needs of the algorithm we assume an asynchronous message passing
model, common in most distributed consistency algorithms. In the model,
agents exchange messages via communication channels. The send (sendMsg())
operation is non-blocking, however the receive operation can be either block-
ing (getMsg()) or non blocking (getMsgNonBlock()). As usual we also assume
that the delay of delivering a message is finite, there is no message loss and
that messages are received in the order that they were send. The underlying
network provides also a broadcast (broadcast()) operation that allows the
transmission of a message from one agent to all other agents participating in
the community.

4.2 The lazy-Dis-SAC Algorithm

In the lazy-Dis-SAC algorithm computation is divided among a community of
agents 1lazyDSACAgent (1),1azyDSACAgent (2),...1azyDSACAgent (K ), where K
is the position of the agent in the community and 1 < K < N, where N is the
total number of domains/variables of the original problem. Thus lazy-Dis-SAC
is a coarse-grain parallel algorithm in which the maximum number of agents
involved is equal to the size of the problem i.e. the number of variables. Each
agent "knows” the complete problem, i.e. is aware of all variables/domains and
constraints of the problem. All agents run the same code, as that is described
in figure 2.

Each agent is assigned a subset of the variables of the original problem,
called responsibility set, which it checks for inconsistencies using a singleton arc
consistency algorithm. The responsibility set is returned by the agentVars()
function (figure 2, line number 1). The latter computes lexicographically the
set of variables based on the position of the agent in the community. No special
algorithm is employed for dividing the set of variables among the agents and no
hierarchy is imposed on agents.

For each variable X; in the responsibility set of the agent, singleton arc
consistency is employed by a call to function SACStep() (figure 2, line number
2). The function returns the domain changes, i.e. inconsistent values removed
from domain D; that is associated with the selected variable X;, which are
collected in an aggregated message (figure 2, line number 4). If the domain of
any variable in the responsibility set becomes empty, a stop message is sent to
the scheduler that indicates that the problem is insoluble and that the overall
process should terminate immediately (figure 2, line number 3). The described
loop continues until no more changes occur in the responsibility set.

After the singleton consistency check, if the aggregated message contains any
changes it is broadcasted to all agents in the society. (broadcast() function,
figure 2, line number 5). This is the implementation of the lazy communication
policy of the algorithm: changes are broadcasted if no other inconsistencies can
be detected in the subproblem the agent handles.

As a final step, messages broadcasted by other agents are collected (function



lazyDSACAgent (position, P)

begin

repeat

agrMsg < {} ;

repeat

noChanges + true;

1 for X; € agentVars (position,P) do
2 domainChanges < SACStep(D;,P);
if D; = {} then

3 sendMsg (scheduler,stop);
exit;

endif

f domainChanges # {} then

4 agrMsg < agrMsg U {(i,domainChanges)} ;
noChanges «+ false;

endif

endfor

until noChanges ;

f agrMsg # {} then

5 broadcast (agrMsg );

sendMsg (scheduler,netMsgSend) ;
stamp + stamp + 1;

endif

7 termination < collectMessages();

-

e

until termination ;

end

Figure 2: lazy-DSAC Algorithm

collectMessages() - figure 2, line number 7). If new messages have arrived
indicating value deletions, then the corresponding variable domain is updated
and the above described loop is restarted.

4.2.1 Inconsistency Detection

Inconsistencies are detected by the SACStep() function, presented in figure 3.
The function iterates through all values of the domain of the selected variable.
It is in fact a restriction of the singleton consistency algorithm to the domain
of a single variable. Inconsistent values are removed from the domain of the
variable and are returned as the output of the function.

4.2.2 Message Collection

The main task of the collectMessages() function presented in figure 4 is to
receive all messages send asynchronously by other agents in the community and



Function SACStep(D;, P)
for d; € D; do
if AC(P|p,;={a;}) is inconsistent then
Di «— Di \ {d,‘};
removed < removed U d;;
propagateChanges(d; );
endif
endfor
return removed

Figure 3: The SACStep(D;, P) Function

propagate the changes included in them (line number 2). The msgBody() func-
tion returns the domain changes included in the message. The rest of the code
appearing in figure 4 is part of the termination detection algorithm explained
in section 4.4.

4.3 The eager-Dis-SAC Algorithm

In the eager-Dis-SAC algorithm (figure 5) computation is also divided among a
community of agents eagerDSACAgent (1), ... eagerDSACAgent (K), where K is
the position of the agent in the community and 1 < K < N, where N is the total
number of domains/variables of the original problem. Thus eager-Dis-SAC is
also a coarse-grain parallel algorithm.

The two versions share the way inconsistencies are detected (SACStep()
function), the way messages are collected (collectMessages() function) and
the termination detection algorithm, as shown in figure 5. Their difference lies in
the communication policy used: the eager policy employed in this case involves
sending inconsistent values of a variable as soon as they are detected (lines 1
in figure 5). This approach increases the total number of messages broadcasted
in the network but reduces the risk of having idle agents waiting for messages.
Apart from this difference algorithms behave identically.

4.4 Termination Detection

Although there exist a number of distributed detection termination algorithms,
their application to this case was considered unnecessary, due to their high cost.
In both versions of the Dis-SAC algorithms, a simpler detection schema has
been employed, that relies on the existence of a scheduling agent (scheduler) as
in the case of DisAC-4 (Nguyen and Deville 1998). The scheduler is responsible
for terminating computations in the society by informing agents via appropriate
messages. The scheduler algorithm is shown in figure 6.
Termination occurs in two cases:

e When a domain wipe-out occurs in some agent, which signifies that the



Function collectMessages()
termination < false;
messages + getMsgNonBlock ();
if messages = {} then
1 sendMsg (scheduler,waiting(stamp));
msg < getMsg();
if msg = end or msg = stop then
| termination < true;

endif
else
propagateChanges( msgBody() );
stamp + stamp + 1;
termination < false;
endif
ndif
else
for msg € messages do
2 propagateChanges( msgBody() );
stamp < stamp + 1;

[¢]

endfor

termination < false;
endif

return termination

Figure 4: Collect Messages Function

problem has been determined to be insoluble. The term immediate termi-
nation is introduced to describe such cases.

e When all agents are in a waiting state, as the latter is described below.
This signifies that the overall problem is singleton arc consistent. In such a
case the scheduler terminates the system by broadcasting an end message.
The term normal termination describes these cases.

In immediate termination the scheduler is notified for the wipe-out by the
agent that detected it, through a stop message. The scheduler then forwards
this message to all the members in the society (figure 6, line number 3).

Normal termination is detected by the scheduler. The scheduling agent
monitors message exchange in a passive manner; each agent when broadcasting
a message to the society also notifies the scheduler via a netMsgSend message
(figure 2 line number 6). Thus the scheduler is aware of the total number of
messages broadcasted in the society by simply maintaining a counter on such
notification messages as shown in figure 6 (line number 1). This is the main
difference between termination algorithms of the Dis-SAC and the Dis-ACY; the
latter polls agents if a message is not broadcasted for a specific time interval.

An agent is said to be in a waiting state if it has no more messages to consume

10



eagerDSACAgent (position,P)

begin

repeat

repeat

noChanges + true;

for X; € agentVars (position,P) do
domainChanges < SACStep(D;,P);
if D; = {} then

sendMsg (scheduler,stop) ;

exit;

endif

if domainChanges # {} then

1 broadcast (domainChanges );
sendMsg (scheduler,netMsgSend) ;
stamp < stamp + 1;

noChanges + false;

endif

endfor

until noChanges ;

termination < collectMessages();

until termination ;
end

Figure 5: eager-DSAC Algorithm

and no further computations to perform. In such a state the agent is idle, i.e.
it executes a blocking receive operation as shown in figure 4 (line number 1).
Before it enters a waiting state the agent informs the scheduler of this fact by
issuing a waiting message, stamped with the total number of messages it has
handled, i.e. the sum of messages both sent and received by the agent. Exit
from the waiting state occurs upon the reception of any message.

When the scheduler receives waiting messages from all agents, stamped
correctly according to the message counter it maintains, then it infers that
all agents have consumed/broadcasted the same number of messages and are
currently idle and thus broadcasts the termination message end (figure 6 line
number 2). If in the mean time, the scheduler is notified that a new message
containing domain changes was broadcasted, then it immediately discards all
previous waiting messages and increases its message counter appropriately.

5 Experimental Results
A prototype of the algorithm was implemented in JAVA. Although the latter

is not considered to be the best candidate in terms of efficiency, our choice was
based to the fact that the resulting code is portable and therefore it can be
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scheduler (Agents)

begin

continue + false;

messageCounter « 0;

repeat

msg < getMsg();

switch msg do

1 case netMsgSend:

messageCounter < messageCounter + 1;
idleAgents + {};

ase waiting(stamp):
if stamp = messageCounter then
idleAgents < idleAgents U msgFrom() ;

endif
if idleAgents = Agents then
‘ termination < true;

N
<]

broadcast (end);
endif
3 case stop:

termination < true;
broadcast (stop);

endsw
until termination ;

end

Figure 6: The Scheduler Algorithm. The from() function returns the sender of
the message.

tested in the future using heterogeneous networks of machines.

The implementation of the singleton arc consistency algorithm is based on
the Java Constraint Library developed by the Artificial Intelligence Laboratory
(LTA)!. Agent communication was implemented using Pathwalker, a Java pro-
gramming library for distributed applications developed by FUJITSU Labs2.
In Pathwalker applications communicate by asynchronous message passing and
can reside either in a single or multiple hosts.

A network of SUN workstations connected by a local network (Ethernet) was
used to conduct the experiments. Each machine participating in the network
hosted one agent, as those are described in the algorithms of figures 2 and 5.

For the evaluation of the algorithm a set of randomly generated binary CSP
problems of 15 variables that contained 15 values in their initial domains were
employed. Problems were generated using the Random Uniform CSP Generator
provided by Christian Bessiére 3. Apart from their size (number of variables),
the two important parameters of the generated problems are their density and

12
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Figure 7: Results on running lazy-DSAC on a network of hosts (density 0.25)

tightness. The former is fraction of the number of binary constraints appearing
in the problem over the maximum number of possible constraints. The latter is
the fraction of the number of value pairs disallowed by the constraint over the
maximum number of disallowed pairs.

The tests included three sets of random problem instances with a density of
0.25, 0.50 and 0.75 respectively. The tightness of the problems varied from 0 to
1. For each tightness value three instances of the problem were generated and
each instance was tried 10 times. In the experiments conducted, it can be safely
assumed that the single agent version corresponds to the sequential singleton arc
consistency algorithm, since the communication overhead introduced is minimal.
All comparisons will be based on this assumption.

Figure 7 shows the results obtained by running the lazy-Dis-SAC algorithm
on a network of seven hosts for problems with density 0.25. As shown the
distributed multi-agent version perform better than the single agent for all values
of tightness that are before the insolubility point (around tightness 0.7), after
which the performance of all versions converges. The behaviour is explained
by the fact that after that point domain wipe-outs occur so the algorithm is
terminated by any agent immediately.

Almost the same conclusions apply for the results obtained by applying the
eager-Dis-SAC on the same set of problems. The results are shown in figure
8 and were collected in the same manner as in the previous case. The eager
version shows a slightly better behaviour around the insolubility point, justified
by the fact that it reduces the idle time of the agents.

The performance of both algorithms slightly changes around the insolubility
point. In order to investigate in more detail the behaviour of the algorithm in
that area, a new set of experiments was conducted on problems with tightness
varying from 0.5 to 0.8 with a finer step. The results are presented in figure 9.

This new set of experiments revealed that for both versions for a specific
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Figure 8: Results of eager-DSAC on a network of hosts (density 0.25)

value of tightness around 0.725 the single agent version performs better than
some of the multi-agent versions that involve a small number of agents. The
above is justified by the fact that in some cases the single agent version more
easily detects insoluble problems than the multi-agent version, since in the lat-
ter the offending domain wipe-outs in the subproblem may heavily depend on
removed values from a variable belonging to some other agent. In this case, the
agent has to finish examining his subproblem first before receiving the deleted
values and detecting the wipe-out, thus increasing the total execution time of
the algorithm. However this phenomenon is rather limited and it can be safely
concluded that overall the performance of the multi-agent version is better than
the single agent one.

Results concerning problems of density 0.50 and 0.75 are presented in figure
10. As shown by the diagrams, the results obtained by this set of expeeriments
do not yield any new conclusions on the performance of the algorithm.

5.1 Multiprocessor vs Multihost Experiments

The aim of the experiments presented in this section is twofold: evaluate how
the presence of a relatively slow underlying network connection affects its per-
formance and test the algorithm in larger problem instances. In this direction
two sets of experiments were carried out: a single host experiment on a four
processor machine (Sun E450) and a multihost experiment, involving a number
of hosts connected by a local area network. On the single host set each agent
is a separate process and communication is still handled by the Pathwalker li-
brary; the benefit is that the delay in message passing operations introduced
by the underlying Ethernet network simply does not exist, permitting to draw
conclusions on the affect of network delays on the performance.

For the current evaluation of the algorithm a set of randomly generated

14
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Figure 9: Lazy and Eager DSAC performance on a network of hosts (density
0.25) for tightness values 0.5 to 0.8, with a finer step.

binary CSP problems of 30 variables was employed each having 20 values in
its initial domain. All the problems were fully connected i.e. the problems’
density was set to 1. The tightness of the problems varied from 0 to 1. For each
tightness value three instances of the problem were generated and each instance
was tried 10 times. It should be noted that the eager- Dis-SAC version was used
since it invlolves broadcasting a larger number of messages and thus is more
likely to suffer from slow network connections.

Figure 11 shows the results obtained by this set of experiments. As shown
in the figure the behaviour of the algorithm remains the same in both cases
indicating that the underlying network does not affect greatly the performance
of the algorithm.
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Figure 10: General and detailed results on running DSAC on a network of
hosts. Experiments concern problems with density 0.50 and 0.75 for both lazy
and eager versions of the algorithm.
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Results Running DSAC on a four Processor Machine
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Results Running DSAC on multiple Hosts
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Figure 11: Running DSAC on a single host and multiple hosts

6 Conclusions

Distributed singleton consistency defines a class of distributed algorithms in the
same sense that singleton consistency does, since any local consistency algorithm
can be used by the agents to detect inconsistent labels. Even more, since each
agent is independent it can apply to its set of variables a different consistency
algorithm according to the nature of its subproblem.

As in the case of Dis-AC/, a strong point of the algorithm is that it can be
implemented in any platform since it does not require exotic shared memory
hardware. A number of hosts connected over a network is sufficient.

A point worth mentioning is that since each agent has a complete view of
the problem, finding the final solution can still be achieved even if some agents
abnormally terminate during execution. Thus a dynamic fault tolerant version
could be introduced, that when it detects some abnormal conditions for some
agent in the society could reassign it responsibility set to some other agent.
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Although the preliminary results from applying the algorithm to random
problems demonstrate significant speedup, further investigation is required to
determine its true potential and benefits. This investigation should most def-
initely include experimental results on small world examples, i.e. structured
problems, for it has been stated in the work described in (Prosser, Stergiou,
and Walsh 2000) that results obtained from the application of SAC on random
and small world problems were contradictory.

Our future plans include a number of more or less obvious extensions to the
algorithm. For example, instead of assigning lexicographically the responsibility
set of each agent, one could define these sets based on the characteristics of the
constraint graph of the problem. For instance an idea would be assign all the
variables in the cycle-cutset of the graph to one agent in order to minimise the
number of message exchanged.
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Notes

1Java Constraint Library v 2.1, http://liawww.epfl.ch/JCL LIA, Swiss Federal Institute of
Technology, Lausanne (EPFL)

2PathWalker, Fujitsu Laboratories Ltd, http://www.labs.fujitsu.com/free/paw/index.html

3Random Uniform CSP Generator, http://www.lirmm.fr/ bessiere/generator.html
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