
Agents with Beliefs and Intentions in Netlogo

Ilias Sakellariou
March 2004, Updated March 2008; June 2010

The present document contains two parts, the first describing belief management and the
second describing the facilities that allow building proactive (intentions-driven) agents in
NetLogo. Thus the combined use of both allows to model and test complex agent
architectures in the Netlogo simulation platform.

The code (library) for both belief and intention handling is included in the file bdi.nls.
NetLogo Versions 4.0 and above allow to have code residing in multiple files and the use
of the standard include facilities, through the appropriate __includes command (see
NetLogo manual for details).

The library is built using the standard programing language provided by NetLogo. The
only requirements are that:

• ALL complex agents MUST have two declared -own variables: "beliefs"
"intentions". These are the variables to which beliefs and intentions are
recorded. So, in your model if there is a breed of turtles which you wish to model
as "BDI" agents, then you should have a BREED-own [beliefs intentions]
declaration (along with any other variables that you wish to include in your
model). MAKE SURE that when you create the variables you initially set their
values to empty list ([]).

• You also must have ticks (see NetLogo manual) in your model or timeout
facilities described below will not function.

• Your model should include a “switch” named “show-intentions”. This is
necessary since the code of the receive message checks in each cycle whether to
output the messages or not.

Please report bugs to iliass@uom.gr
Have fun with NetLogo.

Agents with Beliefs and Intentions in NetLogo 1

An Attempt for Belief Management in NetLogo

This paragraph describes an initial version of belief facilities for the NetLogo platform.
This primitive library contains a set of necessary procedures and reporters for belief
creation and management.
A belief in the library is actually a list of two elements: the type and the content.
 The belief type declares the type of the belief, i.e. indicates a “class” that the belief

belongs to. Examples could include any string, e.g. “position” “agent” etc. Types
facilitate belief management.

 The belief content is the content of the certain type of belief. It can be any Netlogo
structure (integer, string, list, etc). Notice that there might be multiple beliefs of the
same type with a different content, however two beliefs of the same type and content
cannot be added.

For example:
["agent" 5] and ["location" [3 7]] are examples of beliefs that the agent can
have. All agent beliefs are stored in an agent variable beliefs that the agent must have
(<breed>-own) primitive and initially it must be set to the empty list (set beliefs
[]). For example at any given time the beliefs of the agents as stored in that variable can
be:

[["agent" 5] ["location" [3 7]] ["agent" 3]]

Descriptions of the available procedures and reporters for handling beliefs can be found
in the sections that follow.

Procedures and Reporters
create-belief [b-type content]
(reporter)
The reporter creates a new belief with type b-type and content, however it does not store
it in belief memory, but ONLY returns a valid belief. For example:

create-belief "agent" 5
will report a belief ["agent" 5]

belief-type [bel]
(reporter)
Reports the type of the belief bel.

Example: belief-type ["agent" 5] = “agent”

Agents with Beliefs and Intentions in NetLogo 2

belief-content [bel]
(reporter)
Reports the content of belief bel

Example: belief-content ["agent" 5] = 5

add-belief [bel]
(procedure)
Adds a belief to the beliefs structure. For example:

add-belief create-belief "agent" 5

will include belief ["agent" 5] in the beliefs. Multiple such procedures can be
invoked. For instance assuming that the beliefs are initially empty the following
procedure invocations:

add-belief create-belief "agent" 3
add-belief create-belief "location" (list 3 7)
add-belief create-belief "agent" 5

will result to:

[["agent" 5] ["location" [3 7]] ["agent" 3]]

remove-belief [bel]
(procedure)
Removes a belief from the list of beliefs.
In the previous case if bel = [“agent” 5]

remove-belief bel

will result to a change in the belief structure, as shown below:

[["location" [3 7]] ["agent" 3]]

exists-belief [bel]
(reporter)
Returns true if a specific the belief bel belongs to the set of beliefs, otherwise returns
false.
For example if the beliefs are as above

exists-belief [“agent” 3] = true

Agents with Beliefs and Intentions in NetLogo 3

exist-beliefs-of-type [b-type]
(reporter)
Reports true if a belief in the form of ["b-type" <any-content>] exist in beliefs list,
otherwise returns false.
For example if the beliefs are as above

exist-beliefs-of-type “agent-location” = false
exist-beliefs-of-type “agent” = true

beliefs-of-type [b-type]
(reporter)
Returns all beliefs of b-type in a list.
For example in the case above where the beliefs list is

[["agent" 5] ["location" [3 7]] ["agent" 3]]

The following command will have the result indicated:

beliefs-of-type “agent” = [["agent" 5] ["agent" 3]]

get-belief [b-type]
(reporter)

Returns the first belief of a certain type and removes it from the beliefs list.

read-first-belief-of-type [b-type]
(reporter)
Reports the first belief in the beliefs list (structure) that is of type b-type without
removing it.

update-belief [bel]
(procedure)
Removes the first belief that is of the same type with belief bel and replaces it with bel.

Note
The code provided does not claim to be complete. However, it offers a good simulation
of belief management that will help the user to experiment with various problem
parameters in a multi-agent problem. Various extensions might be required-please feel
free to modify the library at will and let me know!
Error handling was kept to an absolute minimum in order not to "waste" system
resources.

Agents with Beliefs and Intentions in NetLogo 4

Implementing Pro-active Agents in NetLogo

Introduction
This paragraph describes an initial attempt to implement proactive agents in NetLogo.
The agents follow a PRS-like model, i.e. a set of intentions (goals) are pushed into a stack
from where the agent executes them. Of course the implementation is far from delivering
all the features of systems like JAM, but still can be used in implementing simple BDI
agents in the NetLogo simulation platform.

The main concept behind the present implementation is the intention stack (variable
intentions in NetLogo). This stack is used to store all intentions of the agent.
Intentions are pop-ed from the stack and are executed (NetLogo command run) until
their condition (done) is met. If the latter evaluates to true the intention is removed and at
a next cycle the next intention is pop-ed. If the intention stack is empty then the agent
does nothing. The previous behaviour is encoded in the procedure execute-
intentions.

An intention is a NetLogo list of two elements. The first is called the intention name and
maps to a NetLogo procedure and the second is the intention-done part and maps to a
NetLogo reporter. For example the following intention:

["move [23 23]" "at-gate 3"]

states that the agent is currently committed to moving towards the point (23, 23) and it
will retain the intention until the reporter at-gate 3 evaluates to true. Note that the user
has to specify (in NetLogo) both the procedure and the reporter, that map to the two parts
of the intention.

The next paragraphs provide brief descriptions of the available procedures and reporters.

execute-intentions
The procedure executes an intention from the intention stack of the agent as explained
above.

get-intention
This reporter reports the current intention of the agent, i.e. returns the list with the
intention name and intention done parts.

intention-name [intention]
Reports the intention name (the executable procedure) of the intention.

Agents with Beliefs and Intentions in NetLogo 5

intention-done [intention]
Reports the done part (argument) of the intention.

remove-intention [intention]
Removes a specific intention from the intention stack

add-intention [name done]
The procedure adds an intention in the intentions list. The first argument is the intention
name that should be some executable procedure you encode in NetLogo. The second
argument should be a reporter that when evaluates to true the intention is removed (can
be used for either removing an intention when is accomplished or dropped). For example:

add-intention "move [23 23]" "at-gate 3"

BOTH ARGUMENTS HAVE TO BE STRINGS (see run/runresult primitive procedures
in NetLogo). So you might find very useful the word primitive of NetLogo.

REMEMBER that intentions are stored in a STACK! For example, consider the
following code:

...
add-intention "check-cargo" "true"
add-intention "load-cargo" "true"
...

The intention load-cargo will be executed before the intention check-cargo.
There is one limitation that concerns strings as arguments in intentions. If you are to add
an intention that maps to an executable procedure that takes strings are arguments that
you must explicitly add the quotes by inserting \" in the appropriate places. (limitation
caused by the functional language of NetLogo). For example if an intention with name
move 3 with a done part at-destination "OA" has to be added to the list of
intentions, then the following code is required.

add-intention (word "move 3") (word "at-destination \"OA\" ")

The above applies also for strings located inside lists.

Note
The code provided does not claim to be complete with respect to what might be required
to build a full BDI agent. However, it offers a good simulation platform for proactive
agents. Various extensions might be required-please feel free to modify the library at will
and let me know!

Error handling was kept to an absolute minimum in order not to "waste" system
resources.

Have fun with NetLogo.

Agents with Beliefs and Intentions in NetLogo 6

	Agents with Beliefs and Intentions in Netlogo
	An Attempt for Belief Management in NetLogo
	Procedures and Reporters
	Note

	Implementing Pro-active Agents in NetLogo
	Introduction
	Note

