
An Attempt to Simulate FIPA ACL Message Passing

in NetLogo

Ilias Sakellariou
March 2004, updated March 2008; June 2010

Introduction
This document describes an initial version of message passing facilities for the NetLogo
platform. This primitive library contains a set of necessary procedures and reporters for message
creation and exchange in the platform.
In order to closely follow the FIPA ACL message format, messages are lists of the form

[<performative> sender:<sender> receiver:<receiver> content: <content>..]

For example, the following message was send by agent (turtle) 5 to agent (turtle) 3, its content is
"where is the plane" and the message performative is "inform".

["inform" "sender:5" "receiver:3" "content:" "where is the plane?"]

As it can be seen from the above, agents are uniquely characterized by an ID (number) that is in
fact the value of their "who" variable automatically assigned at their creation by NetLogo. This
naming was adopted since it greatly facilitates the development of the message passing facilities.
Incoming messages for each agent are stored in a variable named incoming-queue. This is a
"user-defined" variable that each agent must have in order to be able to communicate, i.e.
defined by a <breed>-own declaration. Message passing is asynchronous: sending a message to
agent A simply means adding (append) the message to the incoming-queue list; it does not
require an explicit receive message command to be invoked on the receivers side. At any time
the agent has the ability to obtain the messages from its queue using the reporters described
below.

Since NetLogo version 4.0 supports include file facilities the code described in this document is
located in a file named communication.nls that should be included in your model through an
appropriate "__includes" NetLogo command (see NetLogo Manual). Apart from the above
the requirements are

• All agents that are able to communicate MUST have a declared -own variable
incoming-queue. This is the variable to which all messages are recorded. So, in your
model if there is a breed of turtles which you desire to communicate, then you should
have a BREED-own [incoming-queue] declaration (along with any other variables
that you wish to include in your model. Make sure that when you create the variables you
set its values to empty list ([]).

FIPA ACL Messages in NetLogo 1

• Your model should include a “switch” named “show-messages”. This is necessary
since the code of the receive message checks in each cycle whether to output the
messages or not.

Descriptions of the available procedures and reporters can be found in the sections that follow.

FIPA ACL Messages in NetLogo 2

Creating Messages

create-message [performative]
This reporter creates a new message and adds automatically the sender: field in the new
message. The sender field contains the ID (number) of the turtle (agent) that calls the reporter
(recall that every turtle has a unique ID). The argument <performative> contains the
performative of the message and should be a string. For example, the following command:

set out_msg create-message "inform"

sets the value of the variable out_msg to:

["inform" "sender:5"]

create-reply [performative msg]
The reporter create-reply constructs a new message as a reply to the previous message msg
received by the agent that calls the reporter. The receiver: field in the newly created message
is automatically copied by the received message, so there is no need to add it explicitly. The
sender: field is also added automatically as in the case of the create-message reporter. For
example if the out_msg is

["query-if" "sender:5" "receiver:8" "content:" "free?"]

the following call

set repl_msg create-reply "inform" out_msg

will assign to variable repl_msg the value

["inform" "sender:8" "receiver:5"]

Adding fields to messages
After a message is created with the reporters mentioned above, appropriate fields can (have) to
be added before it is send. This is done by the use of reporters as indicated below.

add-sender [sender msg]
Returns a message that is the original msg that appears in its second argument with the addition
of a "sender:<sender>" field in it. This is rarely used since when a message is created this
filed is automatically added. It is described here for completeness.

FIPA ACL Messages in NetLogo 3

add-receiver [receiver msg]
Returns a message that is the original msg that appears in its first argument with the addition of a
"receiver:< receiver >" field in it. For example, suppose that agent 8 executes the
following code:

...
let somemsg create-message "inform"
set somemsg add-receiver 5 somemsg

The code above will assign to the local variable somemsg the message

["inform" "sender:8" "receiver:5"]

The same effect can be achieved by a call to

set somemsg add-receiver 5 create-message "inform"

(Note by author: Functional programming can be so nice!)
The add-receiver reporter can be called multiple times on a message, in which case it adds
multiple "receiver:" fields. Alternatively the user can use the add-multiple-receivers
reporter described below.

add-multiple-receivers [receivers msg]
Same as add-receiver but adds multiple receivers to a message. Note that the receivers
argument should be a valid NetLogo list.

add-content [content msg]
Returns a message that is the original msg that appears in its second argument with the addition
of a "content:< content >" field in it. The content can be anything (string, list integer). For
example, the code (assumed to be executed by agent 8)

let somemsg create-message "inform"
set somemsg add-receiver 5 somemsg
set somemsg add-content "pl ok" somemsg

will assign to the local variable somemsg the message

["inform" "sender:8" "receiver:5" "content:" "pl ok"]

Obviously the above message construction can be also achieved by the code:

set somemsg add-content "pl ok" add-receiver 5 create-message "inform"

to-report add [msg field value]
This "primitive" reporter adds a field to a message. It is used by all the reporters mentioned
above. Its can also be used to add any new fields that might be considered necessary.

FIPA ACL Messages in NetLogo 4

Accessing Information from Messages
Once a message is received the user can apply the reporters described below to access the
various fields of the message. A point to note is that all reporters except the get-content
below return strings. The get-content reporter returns exactly what it was send (i.e. string,
list, integer, etc).

get-performative [msg]
The get-performative reporter returns the performative of the message msg. The latter is
always the first item in the message (list). For example if somemsg is a message of the form

["inform" "sender:8" "receiver:5" "content:" "plane ok"]

then the call to

get-performative somemsg

will return "inform".

get-sender [msg]
The get-sender reporter returns the sender of the message msg. There is always one sender for
each message. For example if somemsg is a message of the form

["inform" "sender:8" "receiver:5" "content:" "plane ok"]

then the call to

get-sender somemsg

will return "8".

get-content [msg]
The get-content reporter returns the content of a message msg. The content returned is a
string. For example if somemsg is a message of the form

["inform" "sender:8" "receiver:5" "content:" "plane ok"]
then the call to

get-content somemsg

will return "plane ok". If the original message was

["inform" "sender:8" "receiver:5" "content:" [plane 32 ok]]

the same call would return [plane 32 ok] (a NetLogo List).

FIPA ACL Messages in NetLogo 5

get-receivers [msg]
The get-receivers reporter returns the list of receivers of a message msg. Note that there might be
multiple receivers in a message, in which case there are multiple "receiver:<receiver>"
entries in the message (for convenience). For example if somemsg is

["inform" "sender:5" "receiver:1" "receiver:2" "receiver:3" "content:"
"ok"]

then the call to

get-receivers somemsg

will return ["1" "2" "3"]. If the message was

["inform" "sender:5" "receiver:1" "content:" "ok"]

then the same call would return ["1"] (always a list).

Sending and Receiving Messages
This section describes how messages can be send and received using the available procedures in
the library.

send [msg]
This procedure is used to send a message to other agents. There is no need to specify a receiver
since the latter it is included in the message. The rule that applies is "one man's send is another
man's receive - check the code for this). For example the code below (executed by agent 8-as
usual):

let somemsg create-message "inform"
set somemsg add-receiver 5 somemsg
set somemsg add-content "pl ok" somemsg
send somemsg

will send to agent 5 the message that follows
["inform" "sender:8" "receiver:5" "content:" "pl ok"]

receive [msg]
The procedure is invoked by the send procedure given above. Message reception deals with
updating incoming-queue, i.e. appending the msg to this list. This is not to be used by the user;
for message reception see get-next-message reporter described below.

get-message
This reporter is used for obtaining a message from the message list. Its returns the first message
in this list and removes it from the incoming-queue of the agent. If the incoming-queue is empty

FIPA ACL Messages in NetLogo 6

then the reporter returns "no_message" For example, suppose that the incoming-queue
variable of agent 5 contains the following messages

[["query-if" "sender:4" "receiver:5" "content:" "free?"]
["inform" "sender:10" "receiver:5" "content:" "pl bad"]
["request" "sender:3" "receiver:5" "content:" "unload-aircraft"]
["query-if" "sender:14" "receiver:5" "content:" "down?"]

]

the code below assigns to variable message of the agent the first message in the queue and
removes it.

let message get-message

i.e message will be:

["query-if" "sender:4" "receiver:5" "content:" "free?"]

and the incoming-queue

[["inform" "sender:10" "receiver:5" "content:" "pl bad"]
["request" "sender:3" "receiver:5" "content:" "unload-aircraft"]
["query-if" "sender:14" "receiver:5" "content:" "down?"]

]
Subsequently the agent can process the message with the reporters mentioned above. For
example the following code, obtains a message from the queue and creates an appropriate reply:

let message get-message
let content get-content message
let performative get-performative message
if content="pl ok" and performative = "query-if" [

set out create-reply "inform" message
set out set-content "yes" out
send out
]

...

get-message-no-remove
Same as above but does not removes the returned message for the incoming-queue.

remove-msg
This procedure removes the first message from the message list of the agent (incoming-queue),
i.e. it is an explicit remove.

FIPA ACL Messages in NetLogo 7

Broadcasting messages

broadcast-to [breed msg]

The procedure broadcasts to all agents of the breed breed the message msg. It is advisable that
the message does not contain any other receivers added by an explicit add-receiver procedure
call, since in this case the explicitly added receiver will get N identical messages (as many as the
number of buses in the model). For example the following code with send the message "pl ok"
to all buses in the model.

let somemsg create-message "inform"
let somemsg add-content "pl ok" somemsg
broadcast-to buses somemsg

Keep in mind that the incoming-queue is a NetLogo list of lists, and thus apart from what is
given above, you can also access messages by NetLogo list primitives.

Final Note
The code provided does not claim to be complete with respect to the FIPA ACL specification.
However, it offers a good simulation of message exchange that will help the user to experiment
with various problem parameters in a multi-agent problem. Various extensions might be
required-please feel free to modify the library at will!

Error handling was kept to an absolute minimum in order not to "waste" system resources.

Please report bugs to iliass@uom.gr

Have fun with NetLogo.

FIPA ACL Messages in NetLogo 8

	An Attempt to Simulate FIPA ACL Message Passing
	in NetLogo
	Introduction
	Creating Messages
	Adding fields to messages
	Accessing Information from Messages
	Sending and Receiving Messages
	Broadcasting messages
	Final Note

