
TSTATES Library in Netlogo
Manual

Ilias Sakellariou

November 2011, Revised Jun 2013

1 Introduction

The present document is a draft of the manual for the TSTATES DSL for NetLogo. The
TSTATES allows specification of agent behaviour using states machines. This is an on-going
work and the library is under heavy development. The current document concerns Version 2
of the library as described in [1] and [2].

2 Installation and Requirements

2.1 Installation

TSTATES come in the form of a nls file (stateMachines.nls), i.e. a file that can be included in
a netlogo file, by issuing the corresponding __includes command (please see the NetLogo
manual for more information). Thus, the only “installation” requirement is to place the
stateMachines.nls file in your local disk and include the corresponding __includes
command at the top of your model.

The library is built using the standard NetLogo programing language and thus allows taking
advantage of all the features of the NetLogo language as explained below.

Using the library requires NetLogo version 5.0 and above since its implementation heavily
depends on tasks a feature included in recent NetLogo releases.

2.2 Model Requirements

There are a few requirements for using the library in a NetLogo model:

• ALL complex agents, i.e. agents whose specification is defined by state machines,
MUST have three declared -own variables:

◦ active-states

◦ active-states-code

◦ active-machines

◦ active-machine-names

• These are the variables to which current states and their respective code are stored. So,
in your model if there is a breed of turtles which you wish to model as State-Machine
agents, then you should have a BREED-own [active-states active-states-

TSTATES Library version 2

code active-machines] declaration (along with any other variables that you wish
to include in your model).

• MAKE SURE that when you create/setup your turtles you run once during
initialization the ''initialise-state-machine'' library command.

• You also must have ticks (see NetLogo manual) in your model or timeout facilities
described below will not function.

A more detailed discussion and an example model is provided below.

Please note that the manual assumes knowledge of the NetLogo platform.

Please report bugs to either iliass@uom.gr or iliass@uom.edu.gr

TSTATES Library version 2

mailto:iliass@uom.gr
mailto:iliass@uom.edu.gr

3 State Machines in NetLogo (TSTATES LIB)

A state machine in NetLogo is a collection of state definitions under a name. A state machine
definition is implemented as a NetLogo reporter that returns a list of state definitions. The first
state in this list is considered to be the initial state of the machine. The name of the reporter
depends on the type of the state machine and always includes the prefix state-def-of-
<state-machine-name>. Currently, there are two kinds of state machines that can be
defined:

• NetLogo breed specific state machines

• State machines that can be invoked (called) from another state machine.

NetLogo breed specific state machines

There is only one such machine specified for each breed of turtles that exist in a simulation.
The name of the reporter consists of the prefix state-def-of followed by the name of the
breed. For instance if you have a breed collectors, then the corresponding reporter name is
state-def-of-collectors. The definition of NetLogo breed specific machines is
compulsory for each state based agent. These machines are initalised for each turtle (of the
specific breed) by calling the initialise-state-machine turtle procedure at turtle
creation/setup.

Example

Assuming that we have defined a breed called collectors, their behaviour is specified by a
state machine that is defined as follows:

to-report state-def-of-collectors
 report (list
 state "patrol"
 … (state transitions)
 end-state
 state "move-to-base"
 … (state transitions)
 end-state
)
end

During initialization/creation of the turtles of breed collectors the procedure initialise-
state-machine should be called:

to setup-collectors
 create-collectors no-of-collectors [
 set shape "bulldozer top"
 set color green
 initialise-state-machine
 ...
]
end

TSTATES Library version 2

State machines that can be invoked (called) from another state machine.

Their name is formed by the prefix state-def-of-<name> followed by the name of
machine. The latter is used to invoke the specific machine through a transition as discussed
later.

Example

Assume that there is the need to define a machine named get-away-from-obstacle, the
reporter providing the specification to that machine would be:

to-report state-def-of-get-away-from-obstacle
 report (list
 state "finding-a-clear-space"
 ...
 end-state
 state "check-space-cleared"
 ...
 end-state
)
end

3.1 State Definition

Each state definition inside a list as those shown above, is included within the keywords
state <StateName> and end-state. <StateName> can be any NetLogo string. Each
state definition consists of a number of transitions, each having the following form:

on <condition> do <Action> goto <stateName>

OR

on <condition> do <Action> activate-machine <MachineName>

where

• <Condition> is a string representation of either a NetLogo Boolean condition, or a
Boolean reporter or any valid Boolean NetLogo expression,

• <Action> is a string representation of a NetLogo procedure(s) and

• <StateName> is a state name as defined above.

For instance the following is transition from the current state to the state patrol, when the
agent detects that it is at the base (at-base boolean reporter returns true).

 # when "at-base" do "drop-samples" goto "patrol"

There are a few special conditions that allow encoding of complex behaviours

• for-n-ticks <n> will be true for n ticks after last entering the state (using a
transition from a different state),

• after-n-ticks <n> will become true after n ticks the state was last entered

• otherwise is always true, meaning that this transition will always be triggered.

TSTATES Library version 2

• invoked-from <state>, previous-active-state <state>, on-failure
<MachineName> and on-success <MachineName> are special conditions
discussed later.

TSTATES has the keyword “nothing” to indicate a transition with no action. For instance

 # otherwise do "nothing" goto "wait-approval"

The standard goto command allows indicating a state to move to, however this must be a
state within the same machine. Since there can exist multiple machines defined in a NetLogo
file, a transition can move to (or better pass control to) another state machine, through the
activate-machine <StateMachine> transition. This is the callable states feature
supported by TSTATES discussed in the next section. For instance:

 # when "detect-obstacle" do "nothing" activate-machine "get-away-from-obstacle"

Finally the third part can be either a success or failure pseudostate, as discussed later.

Condition evaluation occurs bottom-up using the order that transitions occur in the state
definition. Thus, the first transition to be evaluated is the first one on that list that has its
conditions satisfied.

Example

The complete definition of the collectors state machine is shown below:

to-report state-def-of-collectors
 report (list
 state "patrol"
 # when "detect-obstacle" do "nothing" activate-machine
 "get-away-from-obstacle"
 # when "detect-samples" do "pick-samples" goto "move-to-base"
 # otherwise do "move-randomly" goto "patrol"
 end-state

 state "move-to-base"
 # when "detect-obstacle" do "nothing" activate-machine
 "get-away-from-obstacle"
 # when "at-base" do "drop-samples" goto "patrol"
 # otherwise do "move-towards-base" goto "move-to-base"
 end-state
)
end

3.2 Invoking State Machines

The library supports the concept of callable state machines, i.e. state machines that can be
invoked by a transition from any state and terminate returning a boolean result. The concept is
similar to nested functions, in the sense that when such a machine terminates, ''control'' returns
to the state that invoked the machine. Each such callable state machine, has to include at least
a success or a failure pseudostate to terminate its execution.

For example, in the following code, the last transition incluides a success preudostate:

to-report state-def-of-get-away-from-obstacle

TSTATES Library version 2

 report (list
 state "finding-a-clear-space"
 ...
 end-state
 state "check-space-cleared"
 # when "obstacle-around" do "nothing"
 goto "finding-a-clear-space"
 # otherwise do "nothing" success
 end-state)
end

Upon termination of execution, the calling state can optionally activate transitions on the
result returned by the invoked machine, by employing the special on-success
<MachineName> and on-failure <MachineName> transitions conditions. Machines are
invoked using the activate-machine <MachineName> special action of the library and
the implementation allows sets no limit to the number of machines that can be invoked by a
single state. However, just as ordinary programming functions, nested invocations for
machines can reach any level (permitted by the memory limitations of the NetLogo platform
itself). For instance, the following transition invokes a machine named “get-away-from
obstacle”:

when "detect-obstacle" do "nothing" activate-machine "get-away-
from-obstacle"
As mentioned above, in order to support callable machines, the condition part is extended by a
few primitives. The calling agent can include in its conditions the

• on-success <MachineName> , that succeeds if the machine <MachineName> that
was invoked terminated in a success state, and

• on-failure <MachineName> , that succeeds if the machine invoked terminated in
a failure condition.

It should be noted that before the invocation of the callable machine both these conditions
evaluate to false.
The invoked machine can include in its conditions the following

• invoked-from <state>, which evaluates to true if the state that invoked the
current state is that stated in the parameter.

• previous-active-state <state>, which evaluates to true if the state is active.
An actiove state is a state that has not terminated and has invoked directly or indirectly
the current running machine.

3.3 Executing State machine Agents.

Executing the specified machine for each turtle is done by calling in each simulation cycle the
initialise-state-machine turtle specific primitive. Thus a "run-experiment" would
look like the following

to run-experiment
 ask collectors [execute-state-machine]
 tick
end

TSTATES Library version 2

3.4 TSTATES Available Procedures and Reporters
initialise-state-machine
(procedure)

The procedure “loads” the default state machine for the agent of breed B (machine state-def-
of-B) and initializes the current state to be the first state on that list. It should be called once,
preferably during the initialisation of the agent.

execute-state-machine
(procedure)

Executes the state code (condition evaluation → action on transition → state change) of the
machine. This is a turtle specific primitive that should be called in each discrete step of the
execution in the simulation experiment.

TSTATES Library version 2

3.5 Skeleton of a Model Using TSTATES

This section provides a skeleton of an example model with the major points highlighted in
order to simplify the use of the DSL in an existing model.

_includes ["stateMachines.nls"]

… (Other breeds in your experiment)
breed [collectors collector]

collectors-own […(other values) active-states active-states-code
 active-machines active-machine-names]

… (Other code)

to setup-collectors
 create-collectors robots [
 ...
 initialise-state-machine
]
end

to run-experiment
 ask collectors [execute-state-machine]
 tick
end

to-report state-def-of-collectors
 report (list
 state "patrol"
 # when "detect-obstacle" do "nothing" activate-machine "get-away-from-obstacle"
 # when "detect-samples" do "pick-samples" goto "move-to-base"
 # otherwise do "move-randomly" goto "patrol"
 end-state
 state "move-to-base"
 # when "detect-obstacle" do "nothing" activate-machine "get-away-from-obstacle"
 # when "at-base" do "drop-samples" goto "patrol"
 # otherwise do "move-towards-base" goto "move-to-base"
 end-state)
end

to-report state-def-of-get-away-from-obstacle
 report (list
 state "finding-a-clear-space"
 ...
 state "check-space-cleared"
 # when "obstacle-around" do "nothing" goto "finding-a-clear-space"
 # otherwise do "nothing" success
 end-state)
end

TSTATES Library version 2

Inclusion of nls file

Necessary breed-own variables

Initialization of State Machine

State machine “execution”

State machine Definition
for breed “collectors”

State machine Definition
for callable state machine

3.6 The Termites Model

The termites model provided the initial motivation for the TSTATES library. Below a
comparison between the implementation of the model in TSTATES and the original
implementation in the Netlogo library. Figure 1 presents the state machine of the termites
model.

TSTATES Library version 2

Figure 1: The State Machine of the Termites Model

TSTATE Implementation NetLogo Lib Implementation

to-report state-def-of-turtles
 report (list
 state "search-for-chip"
 # when "pile-found" do "pick-up"
 goto "find-new-pile"
 # otherwise do "move-randomly"
 goto "search-for-chip"
 end-state
 state "find-new-pile"
 # for-n-ticks 20 do "fd 1"
 goto "find-new-pile"
 # when "pile-found" do "nothing"
 goto "put-down-chip"
 # otherwise do "move-randomly"
 goto "find-new-pile"
 end-state
 state "put-down-chip"
 # when "pcolor = black" do "drop-chip"
 goto "get-away"
 # otherwise do "move-randomly"
 goto "put-down-chip"
 end-state
 state "get-away"
 # for-n-ticks 20 do "fd 1"
 goto "get-away"
 # when "pcolor = black" do "fd 1"
 goto "search-for-chip"
 # otherwise do "move-randomly"
 goto "get-away"
 end-state)
end

to go
 ask turtles
 [ifelse steps > 0
 [set steps steps - 1]
 [run next-task
 wiggle]
 fd 1]
 tick
end

to wiggle ;; turtle procedure
 rt random 50
 lt random 50
end

;; "picks up chip" by turning orange
to search-for-chip
 if pcolor = yellow
 [set pcolor black
 set color orange
 set steps 20
 set next-task task find-new-pile]
end

;; look for yellow patches
to find-new-pile
 if pcolor = yellow
 [set next-task task put-down-chip]
end

;; finds empty spot & drops chip
to put-down-chip
 if pcolor = black
 [set pcolor yellow
 set color white
 set steps 20
 set next-task task get-away]
end
;; get out of yellow pile
to get-away
 if pcolor = black
 [set next-task task search-for-chip]
end

TSTATES Library version 2

4 Grammar

What follows if the BNF definition of the TSTATES library DSL.

Machine = "state-def-of-" MachineName "report (list" State+ ")"

State = "state" StateName Transition+ "end-state"

Transition = "#" Condition "do" Action StateChange

Condition = "when" ReporterExp | "otherwise"

 |"for-n-ticks" N | "after-n-ticks" N

 |"invoked-from" StateName |"previous-active-state" StateName

 | "on-failure" MachineName | "on-success" MachineName

 Action = Procedures | "nothing"

 StateChange = "goto" StateName | "activate-machine" MachineName

 |"success" | "failure"

 N = <INTEGER>

 StateName = <STRING>

MachineName = <STRING>

Procedures = <STRING>

ReporterExp = <STRING>

5 Obtaining TSTATES

This manual, examples, and the DSL can be obtained by the following site:

http://users.uom.gr/~iliass (follow the link “Turtles as State Machines”)

6 References

[1] Sakellariou, I. (2012) Agent Based Modelling and Simulation using State Machines,
SIMULTECH 2012, Rome Italy.

[2] Sakellariou, I. (2012). Turtles as state machines - agent programming in netlogo using
state machines. ICAART 2012 February, Algarve, Portugal.

Please report any bugs to iliass@uom.gr

Have fun with NetLogo.

TSTATES Library version 2

	1 Introduction
	2 Installation and Requirements
	2.1 Installation
	2.2 Model Requirements

	3 State Machines in NetLogo (TSTATES LIB)
	NetLogo breed specific state machines
	State machines that can be invoked (called) from another state machine.
	3.1 State Definition
	3.2 Invoking State Machines
	3.3 Executing State machine Agents.
	3.4 TSTATES Available Procedures and Reporters
	3.5 Skeleton of a Model Using TSTATES
	3.6 The Termites Model

	4 Grammar
	5 Obtaining TSTATES
	6 References

