
X-Machines Simulation In NetLogo: Turtles as

X-Machines

Ilias Sakellariou

January 9, 2015

Abstract

This document describes the TXStates Domain Specific Language that
allows specifying and executing X-Machine specification in NetLogo. The
document acts as a manual and a presentation for TXStates in order
to allow people to understand and use TXStates as toll for developing
complex agents. The current document assumes basic knowledge of the
NetLogo platform.

1 Introduction

The main idea behind this work is to allow agent behaviour to be specified as
an X-machine. For completeness, an X-Machine is defined as:

Definition 1. A stream X-machine [Holcombe and Ipate, 1998] is an 8-tuple

X = (Σ, Γ, Q, M, Φ, F, q0, m0)

where:

• Σ and Γ are the input and output alphabets, respectively.

• Q is the finite set of states.

• M is the (possibly) infinite set called memory.

• Φ is a set of partial functions ϕ; each such function maps an input and
a memory value to an output and a possibly different memory value, ϕ :
Σ×M → Γ×M .

• F is the next state partial function, F : Q × Φ → Q, which given a state
and a function from the type Φ determines the next state. F is often
described as a state transition diagram.

• q0 and m0 are the initial state and initial memory respectively.

1

Definition 2. A computation state is defined as the tuple (q,m), with q ∈

Q and m ∈ M . The computation step is defined as (q,m)
ϕ

⊢ (q′,m′) with
q, q′ ∈ Q and m,m′ ∈ M such that ϕ(σ,m) = (γ,m′) and F (q, ϕ) = q′. The
computation is the series of computation steps when all inputs are applied to the
initial computation state (q0,m0).

2 Rational

Informally, an agent is an entity that maps its current percepts and state to an
action. Thus, in order to model the behaviour of an agent using X-Machines, a
mapping of the concepts of the former to the latter is necessary. However, due
to the structure of the X-Machines this mapping is clear and straightforward:

• Agent percepts form the input alphabet Σ, and are updated in each sim-
ulation cycle.

• Agents hold their simulation state (different that the X-Machine State)
and all parameters that affect their behaviour in memoryM . For instance,
agent gender and speed, can be modelled as elements of memory M .

• Agent behaviour is modelled as a set of functions Φ, and obviously the
transition diagram F .

• Finally, agent actions are mapped to the output Γ. A delicate issue re-
garding modelling appears here. Since, according to the X-Machine model,
output cannot change the memory, actions should be implemented care-
fully, so that they do to change the X-Machine state of the calling agent,
but only the simulation environment.

The TXStates provides support for easily encoding all the above in NetLogo.
Briefly:

• Memory M is a NetLogo table and is stored in a turtle-own variable as
described in section 3.1.

• The set of states Q and the transition digram F are encoded using the
primitives of the TXStates DSL as described in section 3.5.

• Functions of the set Φ are encoded as NetLogo reporters, that return
results in a specific format, the latter being processed by the TXStates
interpreter.

• the output Γ contains an action represented as NetLogo tasks and contains
the (set of) NetLogo procedures, applied to the simulation environment
by the interpreter. The DSL supports encoding such tasks as part of the
X-Machine function specification.

2

• Finally, input is provided by the simulation environment, through an ap-
propriate turtle variable. The DSL provides appropriate primitives for
encoding input management.

The rest of this document describes the DSL. In the following terms agent
and turtle refer to the same entity. We will use the term turtle, when describing
issues that are more implementation oriented (reporters, functions etc.).

3 TXStates Domain Specific Language

3.1 Turtle Variables

Each agent (turtle in NetLogo) must carry its own state and memory informa-
tion. To do so, TXStates requires a number of agent own (turtle-own) variables
to be defined in the NetLogo model. These can be categorised in two classes.
The first class consists of the variables that the library uses internally and
should not be changed in any way by the developer of the model, sine they hold
information regarding state code, state transitions, etc. These are:

active-states active-states-code active-machines active-machine-names

The second class consists of those variables that the model under develop-
ment should update/change in each execution cycle:

• memory: A variable holding the memory of the X-machine. Usually, the
memory consists of attribute - value pairs and the DSL provides special
care for its management to facilitate model development.

• percept: A variable that holds the percepts of the agent and is updated in
each execution cycle by the environment. Appropriately encoding percepts
and linking the latter to the model under development is the responsibility
of the model developer. However, the DSL provides a set of primitives to
allow the user clearly define percepts.

• emotion: A variable that holds emotion values, if the latter are specified
in the model.

Thus, for specifying the behaviour of an agent using X-Machines the corre-
sponding turtle in NetLogo should define the above mentioned variables. For
instance, if we are to create turtles of the breed “persons” driven by an X-
machine, the NetLogo code is:

persons-own [active-states active-states-code active-machines

active-machine-names memory percept emotion]

3

3.2 X-Machine Memory Management

As mentioned the memory turtle variable holds the X-machine memory structure.
During agent creation, the variable must be initialised and appropriate memory
positions (attributes/variables) must be created. These are achieved by the
following DSL commands:

• x-init-memory: Initialises memory to and empty structure, and is re-
quired to be invoked only once.

• x-mem-initial-var <varName> <Value>, Adds a new X-machine vari-
able value pair (tuple) to the memory. The first argument <varName> is a
string representing the name of the memory position and the second argu-
ment (<Value>) is its initial value. The latter can be any valid NetLogo
value (integer, float, string, etc) or valid expression/NetLogo reporter. If
<varName> has been added before, its value is replaced by the new value
appearing in the command.

For instance, if it is desired to initialise X-Machine memory and create vari-
able value pairs, with the variables “leader” set to false, “turns” set to 0 and
“speed” being a random value from the list (2,3 4,5), the following code should
be included in the code creating the agent:

...

init-x-memory

x-mem-initial-var "leader" false

x-mem-initial-var "turns" 0

x-mem-initial-var "speed" one-of [2 3 4 5]

...

Accessing memory variables is achieved by calling the function (NetLogo
reporter) x-mem-value <varName> anywhere inside the code of the agent. For
instance a call x-mem-value "turns" anywhere after its initialisation through
x-mem-intitial-val will return the value 0.

Updating memory variables can only occur from an X-function (see subsec-
tion 3.4) and thus during X-Machine execution. The DSL provides the command
x-mem-set <varName> <Value>, for such destructive updates. For instance,
the following code updates variable “leader” to true and increases the value of
“turns” by one.

...

x-mem-set "leader" true

x-mem-set "turns" x-mem-value "turns" + 1

...

It is stressed once more that the x-mem-set command can appear only as a
part of an X-Machine function, since according to the model, only X functions
can change memory values. If the user uses x-mem-set in any other place than
as a “return” value of an X-function, the results will not be as expected.

4

3.3 Input

Encoding the X-Machine input, i.e. agent percepts is facilitated by a set of
primitives. Each input is modelled as an attribute-value pair (tuple, <P> <Val>

in the following), and there can be multiple values for an attribute, i.e. multiple
tuples. The list of primitives is the following:

• x-add-percept <P>, adds a percept <P> with no value. The percept in
encoded as a tuple carrying the dummy value x-nil.

• x-percept-add-value <P> <Val>, adds a percept <P> with value <Val>.

• x-has-percept? <P>, returns true if there is a percept <P> in in input.

• x-percept-value <P>, returns the value <Val> of the percept <P>. In the
case of multiple tuples for the same percept, the first value is returned.

• x-oneof-percept-value <P>, returns a random value <Val> of the per-
cept <P>, in the case that there are multiple tuples for <P>.

• x-all-percept-values <P>, returns all values of <P> in a list.

3.4 X-Functions

X-functions are encoded as NetLogo reporters (NetLogo jargon for functions).
There are no arguments in such functions and consequently to the corresponding
NetLogo reporters, since by X-Machine definition, functions operate on input
and memory and produce output and memory updates. Thus, it is assumed
that each function always has access to the former and produces output to
the latter. X-functions must return (report in NetLogo terms) either a suc-
cess token followed by output and memory updates or a special failure token.
These return values will be used by the TXStates meta-interpreter to determine
possible transitions, according to the implemented semantics of the DSL and
X-Machines.

Thus, each such NetLogo reporter should return either:

• x-false, a keyword handled by the meta-interpreter, indicating that the
function is not applicable,

• x-true <xmOutput> <xmMemUpdates>, indicating an applicable function
that will produce <xmOutput> output and change memory according to
the <xmMemUpdates>.

Other values return will produce an error or unexpected behaviour.
The first “argument” of x-true is a list of actions that the agent has to

perform. These actions must correspond to NetLogo procedures, i.e. represent
the effects of the execution to the environment. Each such action is a NetLogo
task annotated by the keyword x-action, that gets to be executed if the function
is selected by the interpreter. Delimiters #< and ># mark the start and the
end of the list of actions.

Thus <xmOutput> has the form:

5

to-report reachExitSafa

ifelse has-percept-type "exitReached"

[report x-true

#< x-action task [fd 1] >#

#< x-mem-set "turns" (x-mem-value "turns" + x-mem-value "halfCycle")

x-mem-set "halfCycle" 0 >#]

[report x-false]

end

Figure 1: Example of a X Function

#< x-action task [...]

x-action task [...] #>

The second “argument” is a list of memory updates, i.e. invocation of
x-mem-set command described in 3.2, again delimited by #< and >#. Thus,
<xmMemUpdates> has the following form:

#< x-mem-set ...

x-mem-set ... #>

Empty <xmOutput> and <xmMemUpdates> are denoted as #< >#. It should
be mentioned that the above are lists, and not sets, i.e. the changes described
either as environment effects or memory updates will be performed in the order
they appear.

There are no limitations regarding the code that a X-function can include, as
long a it respects the X-Machine simulation semantics. Special care should be
taken so that these functions do not contain side-effects in any other place than
the <xmOutput> part of the function. The meta-interpreter evaluates (runs-
tries-executes) all functions, producing possible memory and output results and
then decides which function to apply, the presence of side-effects (for instance
changes in the simulation environment) would produce unexpected behaviour.

A example X-function encoded as a NetLogo reporter is given in figure 1. The
function checks whether the agent has certain percepts, executes the NetLogo
procedure fd 1 and updates the memory variables “turns” and “halfCycle”.
Note that since memory updates are a list, the first x-mem-set will use the
previous value of “halfCycle” and then set it to 0.

3.5 State and Transition Diagram Specification

Probably the most important aspect of the TXStates DSL is the ease by which
states and transitions between states are encoded, since it allows directly en-
coding X-Machines in NetLogo as described in this section.

Information regarding a single state and the related transitions is encoded
as:

state <StateName>

6

x-func <XMachineFunction 1> goto <StateName 1>

...

x-func <XMachineFunction n> goto <StateName n>

end-state

where <XMachineFunction> is a NetLogo X Function (reporter) of the spe-
cial “type” reported in 3.4 and <StateName> is the name of the target state of
the transition (a simple string). There is a special transition function otherwise

which always results to adopting the corresponding transition, however, a sim-
ilar effect could be achieved by an X Function with empty guard conditions.

An X-machine that consists (as usual) of multiple states is in fact a NetLogo
list of such state definitions:

x-diagram

state <StateNameA>

x-func <XMachineFunction A1> goto <StateName A1>

...

x-func <XMachineFunction An> goto <StateName An>

end-state

state <StateNameK>

x-func <XMachineFunction K1> goto <StateName K1>

...

x-func <XMachineFunction Kn> goto <StateName Kn>

end-state

end-diagram

In such a specification, the first state that appears in the list is considered
to be the initial state q0.

In order to relate an X-Machine definition to a specific breed of turtles to
the execution environment, the list of state definitions given above, is placed
inside a NetLogo reporter the name of which is formed by appending the string
“state-def-of-” to the breed name of the turtles. For instance, if the breed is
called ”persons” the X-Machine controlling the behaviour of persons will be
given be a reporter named“state-def-of-persons”. Figure 2 presents a part of an
X- Machine encoded in the TXStates DSL.

Figure 3 presents the grammar for specifying transitions in TXStates.

3.6 X-Machine Execution

Executing the agent specifications presented in the previous section is the re-
sponsibility of the TXStates meta-interpreter. The latter is invoked by calling
the execute-state-machines command, usually in each simulation cycle. Be-
fore invocation, the user must ensure that the agent percepts been updated,
through appropriate calls of the corresponding primitives in 3.3.

The meta-interpreter is responsible for handling state transitions and action
execution and implements the computation described in definition 2, with each
invocation of the execute-state-machines command corresponding to a single
computation step of Definition 2. Thus at each cycle, the meta-interpreter:

7

to-report state-def-of-persons

x-diagram

state "Entering"

x-func "follower?" goto "MoveToLeader"

x-func "moveInsideTurn" goto "Turning"

x-func "moveInsideEntrance" goto "Entering"

x-func "insideCorridor" goto "Walking"

otherwise do "nothing" goto "Entering"

end-state

state "Walking"

x-func "reachExitSafa" goto "AtExit"

x-func "reachExitMargah" goto "AtExit"

x-func "leaderFar" goto "MoveToLeader"

x-func "leaderFarTurn" goto "MoveToLeader"

x-func "followerFarMove" goto "WaitingForGroup"

x-func "followersFar" goto "WaitingForGroup"

x-func "moveToExit" goto "Walking"

otherwise do "nothing" goto "Walking"

end-state

(... more states)

state "AtExit"

x-func "walksDone" goto "Exiting"

x-func "MoveInsideTurn" goto "Turning"

x-func "MoveInsideExit" goto "AtExit"

otherwise do "nothing" goto "AtExit"

end-state

state "Exiting"

x-func "reachedEnd" goto "Exiting"

x-func "leavingCorridor" goto "Exiting"

end-state

end-diagram

end

Figure 2: TXStates State Transition Diagram Definition

8

Machine → state-def-of- TurtleBreed report X-Diagram
X-Diagram → x-diagram State+ end-diagram

State → state StateName Transition+ end-state

Transition → # x-func X-Function goto StateName
StateName → 〈 STRING〉
X-Function → 〈 STRING〉 | 〈 REPORTER-TASK〉

Figure 3: TXStates DSL grammar for specifying transitions. Please note that
an X-Function is a string representation or a Netlogo reporter, or a NetLogo
reporter task, that returns special values.

1. Forms the list of functions Φstate, that guard transitions in the current
SXM state q, i.e. Φstate = φ ∈ Φ : (q, φ, q′′) ∈ F , in the order they appear
in the agent specification.

2. Form the list Φtrig that contains all functions from Φstate whose guards
are satisfied.

3. Select the first function φi from the trigger list Φtrig .

4. Execute actions specified by φi.

5. Apply memory updates specified by φi.

6. Perform a transition to state q′ that corresponds to function (q, φi, q
′) ∈ F .

In order to simplify the encoding of guards, an ordering is imposed to the
function application; currently the selection function chooses the first function
in the state definition that triggers in step 3. This imposes a priority ordering
on the transitions in a state, with the transitions that appear higher in the state
definition having a larger priority.

The TXStates DSL is provided as a NetLogo library that users can include in
their models and specify behaviour. The major advantage of using TXStates is
that model developers can develop models in an iterative fashion, modifying the
X-Machine model quite easily and viewing directly the results of their changes.
Thus, complex model development can be greatly facilitated.

4 Conclusions

The TXStates is a domain specific language that allows easy encoding and ex-
ecution of X Machine specifications for agents in the NetLogo environment.
Although, the current version is stable, it could benefit from a number of ex-
tensions, such as percept management, and debugging.

9

References

[Holcombe and Ipate, 1998] Holcombe, M. and Ipate, F. (1998). Correct Systems:

Building a Business Process Solution. Springer, London.

10

